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Abstract

Backdoor (Trojan) attacks are an important type of adversarial exploit against deep neu-

ral networks (DNNs), wherein a test instance is (mis)classified to the attacker’s target

class whenever the attacker’s backdoor trigger is present. In this paper, we reveal and

analyze an important property of backdoor attacks: a successful attack causes an al-

teration in the distribution of internal layer activations for backdoor-trigger instances,

compared to that for clean instances. Even more importantly, we find that instances with

the backdoor trigger will be correctly classified to their original source classes if this

distribution alteration is corrected. Based on our observations, we propose an efficient

and effective method that achieves post-training backdoor mitigation by correcting the

distribution alteration using reverse-engineered triggers. Notably, our method does not

change any trainable parameters of the DNN, but achieves generally better mitigation

performance than existing methods that do require intensive DNN parameter tuning. It

also efficiently detects test instances with the trigger, which may help to catch adversar-

ial entities in the act of exploiting the backdoor.
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1 Introduction

Deep neural networks (DNN) have shown impressive performance in many applica-

tions, but are vulnerable to adversarial attacks. Recently, backdoor (Trojan) attacks

have been proposed against DNNs used for image classification Gu, T. et al. (2019);

Chen, X. et al. (2017); Nguyen, T. et al. (2021); Li, S. et al. (2019); Saha, A. et al.

(2020); Li, S. et al. (2021), speech recognition Liu, Y. et al. (2018), text classification

Dai, J. et al. (2019), point cloud classification Xiang, Z. et al. (2021), and even deep

regression Li, X. et al. (2021). The attacked DNN will, with high probability, classify to

the attacker’s target class when a test instance is embedded with the attacker’s backdoor

trigger. Moreover, this is achieved while maintaining high accuracy on backdoor-free

instances. Typically, a backdoor attack is launched by poisoning the training set of the

DNN with a few instances embedded with the trigger and (mis)labeled to the target

class.

Most existing works on backdoors either focus on improving the stealthiness of at-

tacks Zhao, Z. et al. (2022); Wang, Z. et al. (2022), their flexibility for launching Bai,

J. et al. (2022); Qi, X. et al. (2022), their adaptation for different learning paradigms

Xie, C.et al. (2020); Yao, Y. et al. (2019); Wang, L. et al. (2021), or develop defenses

for different practical scenarios Du, M. et al. (2020); Liu, Y. et al. (2019); Dong, Y.

et al. (2021); Chou, E. et al. (2020); Gao, Y. et al. (2019). However, there are few

works which study the basic properties of backdoor attacks. Tran, B. et al. (2018) first

observed that triggered instances (labeled to the target class) are separable from clean

target class instances in a feature space consisting of internal layer activations of the

poisoned classifier. This property led to defenses that detect and remove triggered in-
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stances from the poisoned training set Chen, B. et al. (2019); Xiang, Z. et al. (2019).

As another example, Zhang, Z. et al. (2022) studied the differences between the param-

eters of clean and attacked classifiers, which inspired a stealthier attack with minimum

degradation in accuracy on clean test instances.

In this paper, we investigate an interesting distribution alteration property of back-

door attacks. In short, the learned backdoor trigger causes a change in the distribution

of internal activations for test instances with the trigger, compared to that for backdoor-

free instances; and we theoretically demonstrate that instances with the trigger are

classified to their original source classes after such distribution alteration is re-

versed/corrected, with trainable parameters of the poisoned model untouched. Ac-

cordingly, we propose a method to mitigate backdoor attacks (post-training), such that

classification accuracy on test instances both with and without the trigger will be close

to the test set accuracy of a clean (backdoor-free) classifier. In particular, we correct

distribution alteration by exploiting estimated triggers reverse-engineered by a post-

training backdoor detector, e.g., Wang, B. et al. (2019); Xiang, Z. et al. (2022). Thus,

we propose a “detection-before-mitigation” defense strategy, where we first detect if a

given model is backdoor-poisoned, and if so, mitigate the model with the target class(es)

and the associated trigger(s) estimated by the post-training detector.

It is important to distinguish methods that focus on backdoor mitigation from meth-

ods which focus on backdoor detection. Examples of the latter, including Wang, B.

et al. (2019); Xiang, Z. et al. (2022); Dong, Y. et al. (2021); Guo, W. et al. (2019);

Xiang, Z. et al. (2020), typically detect whether a given model is backdoor poisoned,

and, if so, infer the target class(es) of the attack. Some detection methods (e.g., the ones
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proposed by Wang, B. et al. (2019); Dong, Y. et al. (2021); Xiang, Z. et al. (2022)) are

reverse-engineering based detectors, which also estimate the backdoor trigger(s) associ-

ated with the inferred target class(es). However, if an attack is detected, these detection

methods may not be able to tell whether an instance (input test sample) that is classified

to the inferred target class contains the trigger; moreover, these methods do not infer the

(true) original class for a backdoor-trigger image. The goals of a backdoor mitigation

method are: i) to reduce the number of backdoor-trigger test instances mis-classified

to the target class(es); ii) to correctly classify these backdoor-trigger instances and iii)

while maintaining relatively high accuracy on clean test instances.

Compared with existing mitigation approaches, which require tuning all of the

DNN’s (deep neural network’s) parameters, our method achieves generally better per-

formance and does so without changing any original, trainable parameters of the DNN.

Also, some mitigation methods are applied irrespective of whether backdoor poison-

ing is detected. These methods may unacceptably degrade clean test accuracy, and do

so even when the DNN is clean (attack-free). By contrast, our mitigation is performed

only after a backdoor attack is detected (i.e., “detection-before-mitigation”), and results

in only modest drops in accuracy on clean test instances. Moreover, while most miti-

gation approaches are designed to correctly classify backdoor-trigger instances without

detecting whether these samples in fact contain triggers, our method not only corrects

the decisions for these instances but also makes explicit inference of whether a test in-

stance possesses a trigger. Our main contributions in this paper are twofold:

1. We discover the property that backdoor attacks alter the distribution of neural ac-
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tivations, i.e., for a backdoor-attacked DNN, the distribution of neural activations

for backdoor-trigger instances originating from some class, s, deviates from the

distribution for clean instances from class s. While such distribution alteration is

not surprising, we are the first to prove that the amount of degradation in clas-

sification accuracy on backdoor-trigger instances monotonically depends on

the divergence between the distributions for clean and backdoor-triggered

samples.

2. We propose a post-training backdoor mitigation approach, based on our findings,

which outperforms several state-of-the-art approaches for a variety of datasets and

backdoor attack settings. This is the first work to mitigate backdoor attacks by

correcting distribution alteration using reverse-engineered triggers, without

modifying the trainable DNN model parameters.

Our method offers the following advantages over existing backdoor mitigation ap-

proaches:

1. Since our strategy mitigates backdoor attacks by aligning distributions without

altering the trainable model parameters, our method is more robust, particularly

when clean instances are limited to the defender, compared to those that involve

DNN parameter tuning (see Tab. 3 and Sec. 5.6).

2. A backdoor detection is indispensable before one applies backdoor mitigation

(will be justified in Sec. 5.3 and Tab. 9). Our method is able to integrate with any

reverse-engineering based detection technique. In other words, our method has

strong modularity, and is flexible to be plugged into detection systems without
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Figure 1: Activation distribution of a neuron in the penultimate layer of ResNet-18

trained on CIFAR-10, for instances with and without a backdoor trigger, for (a) a clean

classifier and (b) a backdoor-poisoned classifier (with the same trigger). In (c), the

distribution alteration in (b) is reversed by our proposed method – most instances with

the trigger will thus be correctly classified.

much modification. Hence, our method could provide improved security over

time against evolving attacks.

2 Related Work

There are few prior works analyzing the basic properties of backdoor attacks, e.g., the

studies conducted by Tran, B. et al. (2018); Zhang, Z. et al. (2022). Tran, B. et al.

(2018) observed that triggered instances (labeled to the target class) are separable from

clean target class instances, in a feature space consisting of internal layer activations of

the poisoned classifier. They accordingly developed a pre-training backdoor detection

system, where the detected backdoor-trigger instances are removed, and a new model

is trained from scratch on the sanitized dataset. Tran, B. et al. (2018) thus acts like

an outlier detection system. In contrast, we observe that backdoor attacks cause distri-

bution alteration, in internal layers of the DNN, between clean source class instances
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and backdoor-trigger instances originating from the same (source) class. Moreover, we

demonstrate that backdoor-trigger instances are correctly classified to their classes once

this distribution alteration is corrected. We thus propose a post-training backdoor miti-

gation method based on these findings. In the post-training scenario, one often assumes

the defender only has access to the given trained model and to a small set of clean in-

stances, which generally does not include any of the training samples. This small clean

set is inadequate for (from scratch) training an accurate, attack-free classifier.

Existing backdoor defenses are deployed either during the DNN’s training stage

or post-training (but pre-deployment). The ultimate goal of training-stage defenses

is to train an accurate, backdoor-free DNN given the possibly poisoned training set.

To achieve this goal, Shen, Y. et al. (2019); Huang, K. et al. (2022); Li, Y. et al.

(2021); Chen, B. et al. (2019); Xiang, Z. et al. (2019); Du, M. et al. (2020) either

identify a subset of “high-credible” instances for training, or detect and then remove,

prior to model learning, training instances that may contain a backdoor trigger. Post-

training defenders, however, are assumed to have no access to the classifier’s train-

ing set. Many post-training defenses aim to detect whether a given classifier has been

backdoor-compromised. Wang, B. et al. (2019); Xiang, Z. et al. (2022); Wang, R.

et al. (2020); Liu, Y. et al. (2019) perform anomaly detection using triggers reverse-

engineered on an assumed independent clean dataset; while Xu, X. et al. (2021); Kolouri,

S. et al. (2020) train a (binary) meta classifier using “shadow” classifier “exemplars”

trained with and without attack.

However, model-detection defenses are not able to mitigate backdoor attacks at test

time. Thus, there is a family of post-training backdoor mitigation approaches proposed
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to fine-tune the classifier on the available clean dataset. Some methods prune neurons

that may be associated with the backdoor attack Liu, K. et al. (2018); Wu, D. et al.

(2021); Guan, J. et al. (2022); Zheng, R. et al. (2022); others leverage knowledge distil-

lation to preserve the classification function only for clean instances Li, Y. et al. (2021);

Xia, J. et al. (2022); and some solve a min-max optimization problem analogous to ad-

versarial training defenses used against test-time evasion attacks Zeng, Y. et al. (2022);

Madry, A. et al. (2018). These defenses usually incur a significant degradation in the

classifier’s accuracy on clean instances, especially when the clean data available for

classifier fine-tuning is insufficient. Another family of approaches are designed to de-

tect test instances embedded with the trigger, without altering the classifier Gao, Y. et al.

(2019); Chou, E. et al. (2020); Doan, B. et al. (2020). Defenses in this category may

help to catch the adversarial entities in the act, but they cannot correctly classify the

detected backdoor trigger instances to their original source classes. Moreover, existing

methods in this category require heavy computation at test time (where rapid inferences

are needed). In contrast, our mitigation framework includes both test-time trigger de-

tection and source class inference, both with very little computation, as will be detailed

in Sec. 4.2.

Neural Cleanse (NC) proposed by Wang, B. et al. (2019) detects backdoor attacks

and then fine-tunes the classifier using instances embedded with the reverse-engineered

trigger without mislabeling. As demonstrated in Tab. 13 in Apdx. 9, this is equivalent

to distribution alignment but by altering the DNN’s (trainable and non-trainable) pa-

rameters, which is not explicitly stated in Wang, B. et al. (2019). However, NC is not

as effective as our method in backdoor mitigation, since it tunes millions of parameters
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on insufficient data (see the last paragraph in Sec. 5.2 for more details). In contrast,

we demonstrated that altering the DNN’s trainable parameters is unnecessary. Instead,

aligning the clean and backdoor-trigger sample distributions through straightforward

transformations suffices (cf ., Thm. 3.1). Moreover, NC does not detect backdoor-trigger

instances during inference, unlike our method.

Most existing backdoor mitigation methods apply mitigation independently of de-

tection, e.g., Zeng, Y. et al. (2022); Li, Y. et al. (2021); Xia, J. et al. (2022); Wu, D.

et al. (2021); Zhao, P. et al. (2020). That is, they apply a mitigation method on a given

model without knowing whether it is backdoor poisoned, with the expectation that the

mitigation method should work well regardless of the target class(es) and associated

backdoor triggers(s). However, mitigation may harm the model’s accuracy on clean

instances, especially when mitigation is based only on a limited amount of clean la-

belled data, which is common in practice, see Tab. 3. Moreover, mitigation may waste

significant computation if the given model is attack-free. Hence, we argue that mitiga-

tion should be conducted within a “detection-before-mitigation” framework. In other

words, one should perform backdoor mitigation only if the given model is detected as

backdoor-poisoned. This avoids a significant drop in accuracy on clean instances after

mitigation (in the case where the DNN is backdoor-free). Combined with a backdoor

detection method (which may be based on embedded feature activations), our proposed

mitigation method is also applicable when multiple backdoor attacks are encoded in the

DNN.
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3 Distribution Alteration Property of Backdoor Attacks

In this section, we first present the activation distribution alteration property of back-

door attacks. Then for a simplified setting, we analytically show how closing the “gap”

between the clean-instance and backdoor-trigger instance distributions improves the

accuracy in classifying backdoor-trigger instances; this will guide the design of our

backdoor mitigation approach in Sec. 4.

Property 3.1. (Activation Distribution Alteration) For a successful backdoor attack,

different test samples embedded with the backdoor trigger will induce perturbations to

the activations of an internal DNN layer that are in a similar direction. Thus, there

is effectively a “shift” in the internal layer activation distribution for backdoor-trigger

instances, compared to that for backdoor-free instances.

This property is easily demonstrated empirically, visually. Consider a set of clean

instances from CIFAR-10 (Krizhevsky, A., 2009) and the same set of instances but

with the backdoor trigger used by Gu, T. et al. (2019) embedded in each instance. For

a ResNet-18 (He, K. et al., 2016) classifier that was successfully attacked using this

trigger, there is a divergence between the distributions of the internal layer activations

induced by these two sets of instances. This is shown in Fig. 1b for a neuron in the

penultimate layer as an example. In comparison, for a clean classifier (not backdoor-

attacked), the divergence between the two distributions is almost negligible as shown

in Fig. 1a. Based on these visualizations, we ask the following question: Suppose the

distribution alteration is reversed for each neuron, e.g., by applying a transformation

to the internal activations of the triggered instances, so that the transformed distribu-
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tion now closely agrees with the distribution for clean (without the backdoor-trigger)

instances (see Fig. 1c). Then, following this compensation, will the classifier accurately

predict the true class of origin for these backdoor-trigger instances?

Here, we investigate this problem in a simplified binary classification setting similar

to the one considered by Ilyas, A. et al. (2019). For a clean training random vector

(X, Y ) with a uniform class prior, i.e. Y ∼ U{−1,+1} and with X|Y ∼ N (Y ·

µ,Σ), where µ ∈ Rd and Σ = σ2I , consider a backdoor attack with target class ‘+1’,

triggered instance Xb ∼ N (µb,Σb) with µb = −µ + ϵ, and Σb = σ2
bI . Here, class

‘−1’ is automatically the source class of Xb since there are only two classes.

With backdoor poisoning, a multi-layer perceptron (MLP) classifier is trained with

one hidden layer of J nodes, a batch normalization (BN) layer 1 (Ioffe, S. et al., 2015)

followed by linear activation, and two output nodes with functions f− : Rd → R and

f+ : Rd → R corresponding to classes ‘−1’ and ‘+1’ respectively. An instance x will

be classified to class ‘−1’ if f−(x) > f+(x); else it will be classified to ‘+1’.

Definition 3.1. (η-erroneous classifier) A classifier is said to be η-erroneous if the

error rate for each class is upper bounded by η.

Definition 3.2. (ψ-successful attack) A backdoor attack is said to be ψ-successful if its

attack success rate (ASR), i.e., the probability for triggered instances being (mis)classified

to the attacker’s target class (Li, Y. et al., 2022), is at least ψ; in our case, this means

that P [f+(Xb) > f−(Xb)] ≥ ψ.

1Here we utilize the transformations in the BN layer to reverse the distribution alteration for simplic-

ity. Our method does not truly rely on the existence of BN layers in the trained network, as one can

always insert a BN layer between any two layers of (an already trained) network.
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Given the settings above, for an arbitrary input x, the activation of the j-th node

(j ∈ {1, · · · , J}) (after BN with trained parameters γj and βj), with weight vector wj

in the hidden layer, is:

aj(x) =
w⊤

j x−mj
√
vj

γj + βj, (1)

where mj and vj respectively are the mean and variance stored by the BN layer dur-

ing training on the poisoned training set. Then the activation distribution for clean

source class instances (X|Y = −1) ∼ N (−µ,Σ) is a Gaussian specified by mean

E[aj(X)|Y = −1] and variance Var[aj(X)|Y = −1]; while for triggered instances

Xb ∼ N (µb,Σb), the activation follows a Gaussian specified by mean E[aj(Xb)] and

variance Var[aj(Xb)]. An easy way to eliminate the divergence between these two dis-

tributions is to create a classifier for triggered instances Xb
2 by replacing aj in Eq. (1)

with a∗j(x) = (w⊤
j x − m∗

j)γj/
√
v∗j + βj for each node j, where (see Apdx. 6.1 for

derivation):

m∗
j =

σb
σ
mj + (

σb
σ

− 1)w⊤
j µ+w⊤

j ϵ and v∗j =
σb
σ
vj. (2)

With these choices, E[a∗j(Xb)] = E[aj(X)|Y = −1] and Var[a∗j(Xb)] = Var[aj(X)|Y =

−1] are achieved. But here, we aim to study the quantitative relationship between the

distribution divergence and the SIA metric of Def. 3.3 below. Thus, we consider an “in-

termediate state” with a classifier specified by output node functions g−(·|α) : Rd → R

and g+(·|α) : Rd → R, where for each output node i ∈ {−,+}, gi(x|α) = u⊤
i â(x|α)

depends on a “transition variable” α ∈ [0, 1], with ui the weight vector for the original

2These can be constructed in practice, given an estimated backdoor trigger (obtained by applying a

reverse-engineering based backdoor detector, e.g., Wang, B. et al. (2019); Xiang, Z. et al. (2022)), by

embedding the trigger in clean instances available to the defender.
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output function fi. â(x|α) = [â1(x|α), · · · , âJ(x|α)]⊤ is the activation vector for input

x where âj(x|α) = (w⊤
j x− m̂j(α))γj/

√
v̂j(α)+βj , with m̂j(α) = αmj +(1−α)m∗

j

and v̂j(α) = (α
√
vj + (1 − α)

√
v∗j )

2 being the “intermediate” mean and variance re-

spectively. Given these settings, our main theoretical results are presented below.

Definition 3.3. (Source inference accuracy (SIA)) SIA is the probability that a trig-

gered instance is classified to its original source class (Li, X. et al. (2022)),

i.e., P [g−(Xb|α) > g+(Xb|α)].

Theorem 3.1. (Monotonicity of SIA with Divergence) If the binary classifier with f−

and f+ is η-erroneous with η < 1/2, the attack is ψ-successful with ψ > 1/2, and σb ≤

σ, then SIA of the modified classifier, i.e., P [g−(Xb|α) > g+(Xb|α)], monotonically

decreases as α ∈ [0, 1] increases.

The proof of the theorem is given in Apdx. 6.2. Note that the assumptions for Thm.

3.1 are very mild and reasonable. For example, η < 1/2 is a minimum requirement for

the classifier and ψ > 1/2 is a minimum requirement for a successful backdoor attack.

Moreover, σb ≤ σ generally holds empirically since trigger embedding (e.g., consider

a patch attack) typically reduces the variance of source class instances (while additive

attacks do not change the variance). Also note that α merely gives a way of quantify-

ing distribution divergence for purpose of analysis. According to these results, the core

part of our proposed backdoor mitigation approach should be to find a modified classi-

fier g(·|Θ) by minimizing (e.g., using sub-gradient methods) a measure of distribution

divergence over a well-chosen set of parameters, Θ. This approach is next explicated.
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Figure 2: Illustration of our backdoor mitigation framework with a test-time inference

rule.

4 Reversing Distribution Alteration for Backdoor Miti-

gation

4.1 Problem Description

Threat model. For input space X and label space C, a classifier that has been success-

fully backdoor-attacked will predict to the attacker’s target class t∗ ∈ C when a test

instance x ∈ X is embedded with the backdoor trigger using an incorporation function

∆ : X → X . In addition to this “all-to-one” setting, we also consider the “all-to-

all” setting where a test instance from any class c ∈ C will be (mis)classified to class

(c+ 1)mod|C| when it is embedded with the trigger (Gu, T. et al., 2019).

Defender’s goals. Given a trained classifier f : X → C that may possibly be

attacked, the defender aims to mitigate possible attacks by producing a mapping f̂ :

X → C which (a) has high accuracy in classifying clean instances; (b) when there is a

backdoor attack, classifies triggered instances to their original source class, as though

there is no trigger embedded, i.e., achieves a high SIA; and c) detects whether or not a

test sample contains a backdoor trigger.

Defender’s assumptions. We consider a post-training scenario where the defender
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has no access to the training set of the classifier. The defender does possess an inde-

pendent clean dataset, but this dataset is too small to train an accurate classifier from

scratch, and even too small to effectively fine-tune the full set of classifier parameters

(Liu, K. et al., 2018; Zeng, Y. et al., 2022; Wang, B. et al., 2019). The defender has

full (white box) access to the classifier, but does not know whether it has been attacked

and, if so, does not know the trigger pattern that was used, i.e., the defense is unsuper-

vised – we will leverage existing post-training detectors to determine if the classifier

was attacked and, if so, to estimate the target class(es) of the attack and the backdoor

trigger.

The “detection-before-mitigation” scenario: We propose that backdoor detection

should generally be performed before mitigation. That is, one should first apply a back-

door detection method on the given model and perform backdoor mitigation on it only

if it is detected as backdoor poisoned. Otherwise, backdoor mitigation may harm the

accuracy of the model and is a waste of computation if there is no attack. On the

other hand, if there is an attack, utilizing the detection results (e.g., the detected target

class(es)) helps to reduce the degradation in the classifier’s accuracy on clean test data

brought about by mitigation. (See the experimental results of Sec. 5.3 and Tab. 9.) Our

method indeed mitigates only when a backdoor is detected, and exploits knowledge of

the detected target class(es), as well as the estimated backdoor trigger, produced by

post-training detectors such as Wang, B. et al. (2019); Xiang, Z. et al. (2022).
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4.2 Method

Key idea: The principle behind our mitigation method is simple: A backdoor-trigger

instance will be correctly classified to its original source class by the poisoned model if

the model is altered in such a way as to follow the same distribution as the clean source

class instances in each internal layer feature space of the model (as shown in Fig. 1

and proved by Thm. 3.1). For this purpose there is no need to modify the trainable

parameters. We align distributions through simple transformations, e.g., those used in

batch normalization, on internal layer feature maps, produced for clean samples that

are embedded with the estimated backdoor trigger (heretofore referred to as “backdoor-

trigger instances”). The transformation parameters are optimized by minimizing the

divergence between the distributions of clean instances and triggered instances. To

approximate the distributions, we calculate the histogram of (transformed) feature maps

in each internal layer. Our mitigation framework, along with the test-time detection rule,

is visually summarized in Fig. 2. A detailed explanation will follow the introduction of

our mitigation strategy.

Now we elaborate our mitigation strategy. Based on Thm. 3.1, it would seem that a

good mitigation approach involves modifying the classifier f , i.e., creating a new classi-

fier g(·|Θ) : X → C from f by applying a transformation function hj,l(·|θj,l) : R → R

to the activation of each neuron j ∈ {1, · · · , Jl} in each layer l ∈ {1, · · · , L}. The

transformation parameters Θ = {θj,l} should be jointly chosen so as to minimize the

aggregation (e.g., sum) of the divergences between the distributions qj,l(θ<l ∪ θj,l) ob-

tained using hj,l(ẑj,l(∆(X)|θ<l)|θj,l) (i.e., distributions of the transformed activations

of backdoor-trigger samples) and the target distributions pj,l for zj,l(X) (i.e., distri-
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butions of the activations of clean samples) for ∀j, l, where X follows the clean data

distribution, i.e.:

minimize
Θ={θj,l}

∑
j,l

Dk

(
pj,l||qj,l(θ<l ∪ θj,l)

)
(3)

where: zj,l : X → R and ẑj,l : X → R are activation functions for neuron j in

layer l for classifiers f and g(·|Θ) respectively; θ<l = {θj,l′ |l′ < l} represents all

transformation parameters prior to layer l;Dk(p||q) := Eq[k(p/q)] for a convex function

k : [0,∞) → R satisfying k(1) = 0 and belonging to the family of f -divergences for

any distributions p and q Ali, S. et al. (1966).

However, in practice, we have the following challenges. Challenge 1: Unlike the

distributions of clean samples {pj,l}, which can be simply approximated by feeding

the small number of clean samples possessed by the defender to the poisoned model3

and calculating the histograms of internal activations, the distributions of backdoor-

trigger samples {qj,l} are unknown. Challenge 2: The density form for the activation

of backdoor-trigger samples zj,l(∆(X)) may get altered by the trigger ∆ and will likely

be different from the density form for the activation of clean samples zj,l(X); moreover,

both will likely be non-Gaussian. Thus, minimizing Eq. (3) is not trivial. One cannot

align the distributions by e.g., simply matching the mean and variance.

To address Challenge 1, we approximate the distributions of true backdoor-triggers

samples by those of defender’s samples that are embedded with the trigger(s) estimated

by a post-training detector. This can be accomplished with widely used post-training

reverse-engineering based backdoor detection (RED) approaches which have the same

3As previously discussed, mitigation methods should only be applied to a model if it has been detected

as poisoned.
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assumption as in Sec. 4.1, e.g., the ones proposed by Wang, B. et al. (2019); Chen, H.

et al. (2019); Liu, Y. et al. (2019); Xiang, Z. et al. (2022). These REDs investigate

whether the classifier f is compromised by a backdoor attack and if so, infer the source

and target classes and estimate the associated backdoor trigger(s)4.

To solve a broad range of attack settings, e.g., all-to-one and all-to-all attacks, we

apply the detection methods in a general way following Xiang, Z. et al. (2022). We first

reverse-engineer a trigger by solving an optimization problem defined on the clean set

to get a detection statistic for each ordered putative class pair (s, t) ∈ C ×C. A statistic

which Xiang, Z. et al. (2022) suggests is (the reciprocal of) the estimated perturbation

size inducing high (mis)classifications from s to t. For Wang, B. et al. (2019), it is

the estimated patch size inducing high (mis)classifications from s to t. Then we apply

the anomaly detection approach in Wang, B. et al. (2019), based on the MAD criterion

Hampel, F. (1974), to all the obtained statistics to find all the outlier statistics. We

denote the set of detected class pairs associated with these outlier statistics as P̂ , and

denote T̂ = {t ∈ C | ∃s ∈ C s.t. (s, t) ∈ P̂} as the set of detected target classes.

For each t ∈ T̂ , we (re-)estimate a trigger ∆̂t (as a surrogate for the true back-

door trigger, which is unknown) using clean instances from all detected source classes5

Ŝ(t) = {s ∈ C|(s, t) ∈ P̂}. Then, for each detected target class t ∈ T̂ , we construct

a classifier g(·|Θt) by solving the distribution divergence minimization problem using

the (re-)estimated ∆̂t.

4Note that these REDs can be the backdoor detectors used prior to applying mitigation methods.

Thus, there is no additional computation cost involved.

5More reliable trigger estimation can be achieved in this way for a detected target class, compared

with estimating the trigger based on only one (source, target) class pair.
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Now we address Challenge 2, which is critical to the estimation of Θt using the

reverse-engineered trigger ∆̂t for each detected target class t ∈ T̂ . For simplicity, we

will drop the subscript t below without loss of generality. Our main goals are: (a) speci-

fying the structure of the transformation function hj,l with its associated parameters θj,l,

(b) empirical estimation of the distribution divergence in Eq. (3) using a clean dataset

(i.e., the subset of clean instances from classes in Ŝ(t) for each detected class t), and

(c) choosing the convex function k to specify the divergence form. For (a), we consider

the following transformation function with parameters θj,l = {µj,l, σj,l, υj,l, ωj,l}:

hj,l(z) = max{min{z − µj,l

σj,l
, ωj,l}, υj,l} (4)

where µj,l and σj,l specify the location and scale of the activation distribution, respec-

tively, while υj,l, ωj,l control the shape of the tail of the distribution. For goal (b),

we quantize the real line into M intervals I1 = (−∞, b1), I2 = [b1, b2), · · · , IM =

[bM−1,∞), for M sufficiently large. Then the distribution divergence in Eq. (3) for

each node j and layer l is computed on discrete distributions p̂j,l and q̂j,l over these

intervals. Specifically, the discrete distributions are estimated using a subset Dt of in-

stances from classes Ŝ(t), with the probabilities for interval Ii computed by:

p̂
(i)
j,l =

1

|Dt|
∑
x∈Dt

1[zj,l(x) ∈ Ii] and

q̂
(i)
j,l =

1

|Dt|
∑
x∈Dt

1[hj,l(ẑj,l(∆̂t(X)|θ<l)|θj,l) ∈ Ii].

(5)

To ensure that the distribution divergence is differentiable with reference to the pa-

rameters, such that it can be minimized using (e.g.) gradient descent, we approximate

the non-differentiable indicator function 1[·] in Eq. (5) using differentiable functions
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such as the sigmoid, i.e., we redefine:

1[z ∈ Ii] = sigmoid(τ(z − bi−1))− sigmoid(τ(z − bi)) (6)

where τ is a scale factor controlling the error of approximation. For I1 and IM , which

have semi-infinite support, we use a single sigmoid in Eq. (6). The choice of the

intervals and τ is not critical to the performance, as long as the length of the finite

intervals is sufficiently small, as will be shown in Tab. 7 in Sec. 5. Finally, for goal

(c), we consider several different divergence forms including the total variation (TV)

divergence with k(r) = |r − 1|/2, the Jensen-Shannon (JS) divergence with k(r) =

r log 2r
r+1

+ log 2
r+1

, and the Kullback-Leibler (KL) divergence with k(r) = r log r. The

choice of the divergence form is also not critical to the mitigation performance (see

Apdx. 10).

We now provide a detailed explanation of our backdoor mitigation framework,

which is visually summarized in Fig. 2. For any test input x ∈ X , if classifier f is

deemed attack-free, i.e., P̂ = ∅, the classification output under our mitigation frame-

work will be f̂(x) = f(x). Otherwise, if f(x) ∈ C \ T̂ , we trust the class decision

and set f̂(x) = f(x) both because x is unlikely to possess a trigger and because a suc-

cessful attack should not degrade the classifier’s accuracy on clean instances. However,

if f(x) = t ∈ T̂ , there are two main possibilities: 1) x is a clean instance truly from

class t; 2) x is classified to class t due to the presence of the trigger. To distinguish

these two cases, we feed x to the optimized g(·|Θt). If g(x|Θt) ̸= f(x), x likely

contains a trigger, and thus we should set f̂(x) = g(x|Θt), which is likely the original

source class of x based on our theoretical results. Note that in the test-time inference

procedure above, the major (additional) computation for both backdoor trigger instance
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detection and source class inference is a forward propagation, feeding x to g(·|Θt),

which is comparable to the computation required for classification using f . Moreover,

such additional computation occurs only if an attack is detected and f(x) = t; thus, our

test-time inference is very efficient.

5 Experiments

5.1 Experiment Setup

Datasets: Our main experiments are conducted on the benchmark CIFAR-10 dataset,

which contains 60,000 32 × 32 color images from 10 classes, with 5,000 images per

class for training and 1,000 images per class for testing (Krizhevsky, A. (2009)). We

also show the effectiveness of our proposed mitigation framework on other bench-

mark datasets including GTSRB (Houben, S. et al. (2013)), CIFAR-100 (Krizhevsky,

A. (2009)), ImageNette (Howard, J. (2020)), TinyImageNet Le, Y. et al. (2015), and

VGGFace2 Cao, Q. et al. (2018). Details of these datasets can be found in Apdx. 7.1.

Data allocation in our experiments strictly follows the assumptions in Sec. 4.1. For

each dataset, we randomly sample 10% of the test set to form the small, clean dataset

DDefense assumed for the defender. The remaining test instances, denoted by DTest, are

reserved for performance evaluation.

Attack settings: In this paper, we consider standard backdoor attacks launched by

poisoning the training set of the classifier (Gu, T. et al., 2019; Chen, X. et al., 2017).

In particular, we consider both the all-to-one (A2O) attacks and the all-to-all (A2A)

attacks in our main experiments on CIFAR-10. For A2O attacks on CIFAR-10, we
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arbitrarily choose class 9 as the target class; while for A2A attacks, as described in

Sec. 4.1, triggered instances from any class c ∈ C are supposed to be (mis)classified

to class (c + 1)mod|C|. For each attack setting, we consider the following triggers: 1)

a 3 × 3 random patch (BadNet) with a randomly selected location (fixed for all trig-

gered images for each attack) used in Gu, T. et al. (2019); 2) an additive perturbation

(with size 2/255) resembling a chessboard (CB) used in Xiang, Z. et al. (2022); 3) a

single pixel (SP) perturbed by 75/255 with a randomly selected location (fixed for all

triggered images for each attack) used by Tran, B. et al. (2018); 4) invisible triggers

generated with l0 and l2 norm constraints (l0 inv and l2 inv respectively) proposed by

Li, S. et al. (2021); 5) a warping-based trigger (WaNet) proposed by Nguyen, T. et al.

(2021); 6) a Hello Kitty blending trigger (Blend) used by Chen, X. et al. (2017); 7) a

trigger generated by the horizontal sinusoidal function (SIG) defined in Barni, M. et al.

(2019). Details for generating these triggers are deferred to Apdx. 7.2. We randomly

created 5 attacks for each attack setting e.g. by randomly locating the trigger. We also

evaluated against the “label-consistent” (CL) backdoor attack proposed by Turner, A.

et al. (2019) on the CIFAR-10 dataset, which only embeds the backdoor trigger into the

target class training samples. Details are given in Apdx. 7.2. For experiments on the

other five datasets, we only consider A2O attacks for a subset of triggers where suffi-

ciently high success rate can be achieved. For each dataset, we create one attack for

each trigger being considered. A2A attacks are not considered for these datasets since

there is insufficient data per class for them to achieve successful attacks. More details

about the attacks, including the number of backdoor-trigger images used for poison-

ing and the target class selected to create A2O attacks for the five datasets other than
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CIFAR-10, are shown in Apdx. 7.2.

Performance evaluation metrics: 1) The attack success rate (ASR) is the fraction of

clean instances in DTest (mis)classified to the designated target class when the backdoor

trigger is embedded. 2) The clean test accuracy (ACC) is the DNN’s accuracy on DTest

without trigger embedding. 3) The SIA (Def 3.3) is the fraction of clean instances in

DTest classified to the original source class when the trigger is embedded. For a suc-

cessful backdoor attack, ASR and ACC should be high, while SIA should be low. For a

successful mitigation approach, the resulting ASR should be low, while ACC and SIA

should be high.

Training settings: We train one classifier for each attack to evaluate our mitigation

approach against existing ones. Training configurations, including the DNN architec-

ture, batch size, number of epochs, etc., are detailed in Tab. 11 in Apdx. 7.3. Data

augmentation choices, including random cropping and horizontal flipping, are applied

to each training instance. As shown in Tab. 1, the defenseless “vanilla” classifiers being

attacked achieve high ACC but suffer high ASR and low SIA (averaged over the five

attacks we created) for all trigger types and for both A2O and A2A settings, i.e., the

attacks are all successful and hence adequate for performance evaluation.

Hyper-parameter settings: We compare our mitigation approach (named ‘Batch Nor-

malization Alteration’ (BNA) in the sequel) with six well-known and/or state-of-the-art

methods, including NC(Wang, B. et al. (2019)), NAD(Li, Y. et al. (2021)), I-BAU(Zeng,

Y. et al. (2022)), ANP(Wu, D. et al. (2021)), ARGD(Xia, J. et al. (2022)), and MCRZhao,

P. et al. (2020). For MCR, in their original paper, the defender is assumed to have ac-

cess to two poisoned models, which may be impractical. Thus, we fine-tune the given
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model on the defender’s dataset and use it as the second model (which is also suggested

in their paper). For all these other methods, we used their officially posted code for

implementation. For BNA, following Sec. 4.2, we first perform detection by reverse-

engineering a backdoor trigger for each class pair using objective functions from Wang,

B. et al. (2019); Xiang, Z. et al. (2022) and then feed the statistics obtained based on

the estimated trigger to an anomaly detector. Our anomaly detector is based on MAD,

which is a classical approach also used by Wang, B. et al. (2019); Chen, H. et al. (2019);

Wang, R. et al. (2020). Here, we set the detection threshold at “7-MAD” which easily

catches all the backdoor class pairs. More details, including pattern estimation and de-

tection statistics are shown in Apdx. 8. Then, for each detected target class, we solve

the divergence minimization problem to optimize the transformation functions using

learning rate 0.01 for 10 epochs. Since our mitigation method applies simple transfor-

mations which are also used in BN, we consider model structures that contain BN layers

(which is very common) for simplicity. But note that the proof of monotonicity of SIA

with distribution divergence (Thm. 3.1) and our method (Sec. 4.2) do not truly rely on

the presence of BN layers – one can always insert a BN layer between any two given

layers of the trained network. If a neuron is followed by a BN, instead of applying an

additional transformation function hj,l, we treat the mean and standard deviation of BN

as the parameters µj,l and σj,l associated with hj,l respectively. We optimize the mean

and standard deviation by minimizing distribution divergence for all the BN layers. In

Sec. 5.2, we only show results for BNA with the total variation divergence. Results

for KL-divergence and JS-divergence are deferred to Apdx. 10. To compute the diver-

gence, we use the “interval trick” (Eq. (5)) to obtain the discrete empirical distribution.
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For simplicity, we let all finite intervals, Ii = [bi−1, bi), i = 1, · · · ,M , have the same

length ∆b = 0.1. For each neuron, we set bmin and bmax as the minimum and maximum

activations, respectively, when feeding in clean instances from DDefense to the poisoned

classifier f . Then, the number of intervals is M = ⌈ bmax−bmin

∆b
⌉; and all intervals can be

specified by b0 = bmin and bi = bi−1 + ∆b. Finally, the scale factor in Eq. (6) is set to

τ = 150, which is obtained by line search to minimize the total variation between the

“soft” distribution and the empirical one on DDefense. In fact, the choices for ∆b and τ

(over reasonable ranges) have little impact on our mitigation performance, as shown in

Tab. 7.

5.2 Backdoor Mitigation Results

In Tab. 1, we show the ASR, ACC, and SIA for BNA compared with the other six

methods (which are all DNN tuning-based) for attacks on CIFAR-10. Each metric is

averaged over the five attacks created for each trigger type and attack setting, with

the highest ACC and SIA, and the lowest ASR in bold. We found that these tuning-

based methods are sensitive to the choices of hyper-parameters, such as the learning

rate. Hence, for these methods, we optimize the hyper-parameter values to show the

best results for these methods in Tab. 1. Although these tuning-based methods (except

for MCR) can effectively deactivate backdoor attacks (i.e., significantly reduce ASRs),

there is a clear drop (3%-20%) in both ACC and SIA, compared with those for the

vanilla DNN (the first row of Tab. 1). This is possibly due to tuning many DNN param-

eters using very limited data. (Note that BNA mitigation uses much less clean labelled
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Trigger

type

BadNet CB l0 inv l2 inv SP WaNet

A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A

Vanilla

ACC 0.9122 0.9121 0.9135 0.9098 0.9135 0.9131 0.9130 0.9126 0.9138 0.9060 0.9032 0.8994

ASR 0.9573 0.8658 0.9685 0.8692 0.9989 0.8973 0.9889 0.8620 0.8912 0.8550 0.9153 0.8216

SIA 0.0397 0.0432 0.0293 0.0257 0.0010 0.0151 0.0107 0.0194 0.1016 0.0593 0.0772 0.0714

NC

ACC 0.8797 0.8762 0.8735 0.8776 0.8835 0.8767 0.8750 0.8690 0.8854 0.8614 0.8748 0.8756

ASR 0.0130 0.0154 0.0064 0.0155 0.0120 0.0150 0.0080 0.0179 0.0335 0.0188 0.0144 0.1381

SIA 0.8532 0.8614 0.8312 0.8597 0.8654 0.8650 0.7932 0.8254 0.8362 0.8477 0.8231 0.7183

I-BAU

ACC 0.8500 0.8758 0.8812 0.8719 0.8452 0.8800 0.8825 0.8726 0.8666 0.8745 0.8777 0.8700

ASR 0.0094 0.0164 0.1973 0.0811 0.0091 0.0133 0.2600 0.3353 0.0172 0.0154 0.1339 0.1253

SIA 0.8301 0.8583 0.6399 0.7756 0.8277 0.8673 0.5549 0.4928 0.8479 0.8609 0.7059 0.7269

ANP

ACC 0.8644 0.8492 0.8241 0.8577 0.8455 0.8648 0.8345 0.8421 0.8195 0.8411 0.8298 0.8607

ASR 0.0474 0.1199 0.3351 0.0927 0.0836 0.1326 0.4703 0.2648 0.1229 0.0495 0.0263 0.0835

SIA 0.8184 0.7205 0.4587 0.7168 0.7697 0.7324 0.3351 0.4976 0.7060 0.7942 0.7368 0.7451

NAD

ACC 0.8814 0.8819 0.8800 0.8908 0.8958 0.9047 0.8991 0.8781 0.8813 0.8761 0.8592 0.8963

ASR 0.0193 0.7132 0.0871 0.0681 0.0356 0.0457 0.0254 0.0191 0.0667 0.0647 0.0571 0.1056

SIA 0.8498 0.1520 0.7711 0.8084 0.8504 0.8534 0.8221 0.8337 0.8123 0.8082 0.7710 0.7773

ARGD

ACC 0.8689 0.8482 0.8800 0.8774 0.8880 0.8885 0.8669 0.8583 0.8899 0.8728 0.8739 0.8755

ASR 0.0368 0.0839 0.0099 0.0117 0.0079 0.0122 0.0125 0.0179 0.0955 0.0452 0.0111 0.0362

SIA 0.8217 0.7544 0.8657 0.8690 0.8725 0.8786 0.8168 0.8297 0.7934 0.8295 0.8283 0.8241

MCR

ACC 0.8751 0.8840 0.8126 0.8618 0.8534 0.8834 0.8688 0.8481 0.8886 0.8613 0.8808 0.8661

ASR 0.1447 0.1001 0.6015 0.1004 0.2900 0.0000 0.9769 0.0971 0.0136 0.1166 0.0268 0.0974

SIA 0.7572 0.0811 0.3151 0.1163 0.0927 0.1000 0.0210 0.3524 0.8570 0.2239 0.7999 0.7789

BNA

(ours)

ACC 0.9032 0.8951 0.9072 0.8615 0.9068 0.8944 0.9005 0.8638 0.9058 0.8921 0.8945 0.8792

ASR 0.0139 0.0189 0.0127 0.0202 0.0033 0.0111 0.0042 0.0168 0.0104 0.0225 0.0041 0.0191

SIA 0.8835 0.8841 0.8787 0.8820 0.8924 0.8942 0.8383 0.8522 0.8863 0.8811 0.8530 0.8607

Table 1: Average ACC, ASR, and SIA for BNA, compared with NC, NAD, I-BAU,

ANP, and ARGD, against all the created attacks applied to ResNet-18 trained on the

CIFAR-10 dataset. Best performances are indicated in bold.
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Vanilla NC I-BAU ANP NAD ARGD MCR BNA

CL

ACC 0.9062 0.9061 0.1735 0.8998 0.3354 0.2362 0.8829 0.8967

ASR 0.9304 0.1444 0.4940 0.4632 0.0636 0.0581 0.7756 0.0594

SIA 0.0667 0.7558 0.0896 0.4977 0.2985 0.2349 0.1932 0.8057

Table 2: ACC, ASR, and SIA for BNA, compared with those of NC, NAD, I-BAU,

ANP, and ARGD, against the ResNet-18 trained on the CIFAR-10 dataset poisoned by

the label-consistent (CL) backdoor attack.

VGGFace2 CIFAR-10

Vanilla NC I-BAU BNA Vanilla NC I-BAU ANP NAD ARGD MCR BNA

ACC 0.8989 0.8967 0.6828 0.8917 0.9122 0.8848 0.8539 0.6463 0.8731 0.4946 0.8650 0.9026

ASR 0.9771 0.9693 0.9737 0.0046 0.9573 0.2531 0.4175 0.0117 0.8880 0.0227 0.8078 0.0185

SIA 0.0216 0.0294 0.0196 0.8889 0.0397 0.6842 0.5148 0.6324 0.1007 0.4731 0.1684 0.8807

Table 3: ACC, ASR, and SIA for BNA, compared with those of NC, I-BAU, ANP,

NAD, ARGD, and MCR, with limited amount of clean data on VGGFace2 and CIFAR-

10. Both datasets are poisoned by the BadNet attack.

data than what was reported for these other methods in their original papers.) Though

MCR can effectively deactivate most of the backdoor attacks, excluding the global pat-

tern CB and l2 inv, it fails to infer the true source classes for the backdoor-triggered

instances. For ANP with neuron pruning, the performance is acceptable only for A2O

with the BadNet trigger. One possible reason is that invisible, perturbation-based trig-

gers affect most neurons only moderately (which is also discussed in Wang, H. et al.

(2022)); thus, pruning a small number of neurons cannot mitigate the attack. In con-

trast, our method successfully mitigates all these backdoor attacks (with generally the

best ACC and ASR compared with the others) regardless of the trigger type and attack

setting. Notably, since the purpose of BNA’s divergence minimization is to maximize the
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SIA, it unsurprisingly achieves the best SIA with a clear margin over all other methods,

in all cases (the corresponding distribution divergnces are shown in Tab. 13 in Apdx. 9).

We also tune the poisoning ratio and perturbation size used in A2O CB attacks, and the

performance for BNA slightly declines as the attack is strengthened, as shown in Tab. 4.

However, it still outperforms the other methods (see Tab. 15 in Apdx. 11).

Number of poisoned instances per class Perturbation size (*255)

50 100 150 200 250 2 3 4 5 6

ACC 0.9112 0.9094 0.9098 0.9102 0.9015 0.9094 0.9041 0.9079 0.8992 0.8912

ASR 0.0095 0.0141 0.0121 0.0170 0.0090 0.0141 0.0395 0.0222 0.0109 0.0388

SIA 0.8851 0.8837 0.8728 0.8840 0.8662 0.8851 0.8783 0.8711 0.8814 0.8435

Table 4: ACC, ASR, and SIA for BNA as a function of (1) the number of poisoned

instances injected into the training set; (2) the perturbation size under all-to-one CB

attack.

For the CL attack, we poison half (2500) of the target-class training samples to

achieve an effective attack (which is stronger than in the original paper (Turner, A.

et al., 2019)), as shown in Tab. 2. Although NAD and ARGD effectively deactivate the

attack, both ACC and ASR drop significantly. For NC, ANP, and MCR, the ACC after

mitigation is almost the same as the ACC before mitigation, but the ASR is still high.

For ANP, nearly half of the backdoor-trigger images are unimpeded by the mitigation

system. The attack is still effective after MCR is deployed. I-BAU does not perform

well in mitigating the CL attack – the mitigated model fails to correctly classify most

of the clean test images, but still recognizes half of the backdoor-trigger images to the

target class. By contrast, BNA decreases the ACC by only a small amount, reduces

ASR to around 6%, and correctly classifies 80% of the backdoor-trigger images.
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Results of BNA on other datasets are shown in Tab. 3 and 5. We first train a

DNN on the VGGFace2 dataset poisoned by the BadNet attack. As shown in Tab. 3,

the BadNet attack is effective, with a high ASR and a nearly unchanged ACC. (The

ACC for the DNN trained on the clean VGGFace2 dataset is 0.9211.) We then apply

BNA, NC, and I-BAU on the poisoned DNN.6 For all mitigation methods, we only

preserve 10 clean images per class since there is a severely limited number of samples

for VGGFace2. BNA effectively reduces the ASR and yields a high SIA, outperforming

the other mitigation methods. We will thoroughly discuss the impact of the number of

clean images possessed by the defender in Sec. 5.6. The ACC for DNNs trained without

attack for GTSRB, CIFAR-100, ImageNette, and TinyImageNet are 0.9567, 0.6926,

0.8726, and 0.5224, respectively; while ACC, ASR, and SIA for attacked DNNs are

shown in the row “Vanilla” in Tab. 5, which demonstrate that all the attacks are effective.

We apply BNA on the poisoned DNNs, with the same settings as for CIFAR-10, which

significantly reduces ASR (to less than 1.3% in all cases), with uniformly high SIA and

ACC.

We also evaluated the performance of our BNA against all-to-one backdoor attacks

that utilize more complex global backdoor patterns, such as the blended backdoor at-

tack (Chen, X. et al., 2017) and Sinusoidal Signal backdoor attack (SIG) (Barni, M.

et al., 2019). Details of the attack configurations can be found in Apdx. 7.2. The perfor-

mance of our BNA as well as other mitigation methods are shown in Tab. 6. The results

6We did not evaluate the performance of ANP, NAD, and ARGD on VGGFace2, since these refer-

ences do not provide the architecture of VGG-16 that fits their respective mitigation system. Although

MCR provides the architecture of VGG-16, it is different from the one provided by PyTorch. Therefore

we cannot load the pre-trained weights and make a fair comparison.
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demonstrate the effectiveness of our BNA mitigation method even when dealing with

complicated backdoor patterns. Compared with the other methods7, our BNA signifi-

cantly reduces the ASRs and produces relatively satisfactory SIAs, while maintaining

ACCs that are competitive with pre-mitigation figures.

Trigger

type

GTSRB CIFAR-100 TinyImageNet ImageNette

BadNet CB l0 inv l2 inv WaNet BadNet CB l0 inv l2 inv BadNet BadNet

Vanilla

ACC 0.9517 0.9556 0.9531 0.9521 0.9408 0.6796 0.6917 0.6863 0.6804 0.5192 0.8626

ASR 1.0000 1.0000 1.0000 0.9794 0.9000 0.9037 0.9169 0.9935 0.9097 0.8058 0.9144

SIA 0.0000 0.0000 0.0000 0.0169 0.0905 0.0781 0.0646 0.0063 0.0707 0.1134 0.0771

BNA

ACC 0.9491 0.9548 0.9505 0.9500 0.9404 0.6770 0.6863 0.6858 0.6787 0.5178 0.7941

ASR 0.0000 0.0000 0.0122 0.0001 0.0041 0.0002 0.0524 0.0062 0.0016 0.0043 0.0016

SIA 0.9312 0.9454 0.9330 0.8945 0.9338 0.6526 0.5880 0.6169 0.5224 0.4965 0.7940

Table 5: ACC, ASR, and SIA for BNA against all-to-one attacks on CIFAR-100, GT-

SRB, ImageNette, and TinyImageNet datasets.

Vanilla NC I-BAU ANP NAD ARGD BNA

Blend

ACC 0.9264 0.8132 0.7932 0.8667 0.8221 0.4856 0.8942

ASR 0.9731 0.0488 0.7419 0.5119 0.0521 0.0782 0.1283

SIA 0.0254 0.5593 0.1427 0.3369 0.6003 0.4181 0.6252

SIG

ACC 0.9266 0.8234 0.5696 0.8251 0.7794 0.4233 0.8716

ASR 0.9991 0.1414 0.2594 0.9451 0.3223 0.0988 0.0158

SIA 0.0008 0.2980 0.1319 0.0383 0.2503 0.3271 0.3357

Table 6: ACC, ASR, and SIA for BNA, compared with those of NC, NAD, I-BAU,

ANP, and ARGD, against the ResNet-18 trained on the CIFAR-10 dataset poisoned by

the all-to-one Blend and SIG backdoor attacks.

7We weren’t able to reproduce the results reported in the published papers describing these methods

due to different defense settings – in our experiments, the defender possesses far fewer clean samples.
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τ (∆b=0.1) 10 100 200 300 400 500 600 700 800 900 1000

ACC 0.9024 0.9025 0.9022 0.9019 0.9024 0.9019 0.9022 0.9018 0.9017 0.9015 0.9021

ASR 0.0257 0.022 0.0206 0.0207 0.0214 0.0202 0.0212 0.0209 0.0207 0.0201 0.0204

SIA 0.8744 0.8758 0.8774 0.8768 0.8768 0.8775 0.8773 0.8768 0.8772 0.8778 0.8777

∆b (τ=150) 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

ACC 0.9028 0.9018 0.9019 0.9023 0.9019 0.9023 0.9019 0.9019 0.9022 0.9022 0.9022

ASR 0.0197 0.0202 0.0199 0.0204 0.0199 0.0204 0.0198 0.0206 0.0206 0.0207 0.0212

SIA 0.8799 0.8775 0.8779 0.8773 0.8772 0.8779 0.8773 0.8767 0.8779 0.8769 0.8764

Table 7: ACC, ASR, and SIA for BNA as a function of scale factor and bin size on

ResNet-18 trained on CIFAR-10 poisoned by all-to-one BadNet attack.

5.3 The “detection-before-mitigation” scenario

As discussed in Sec. 4.1, BNA performs backdoor mitigation only after the model has

been detected as backdoor-poisoned. To justify the “detection-before-mitigation sce-

nario”, we first apply the mitigation methods that do not involve a detection system

(i.e., I-BAU, ANP, NAD, ARGD, and MCR) on a ResNet-18 trained on the attack-free

CIFAR-10 dataset. The resulting (absolute) drop in ACC is shown in column “clean”

in Tab. 9. ANP has the largest impact on ACC – the ACC drops by 0.1877 after miti-

gation. I-BAU and ARGD respectively decrease the ACC by 0.0684 and 0.0343. NAD

and MCR keep the ACC almost as high as that of the vanilla model, but they are not

sufficiently effective in terms of SIA when the model is poisoned. NC and BNA detect

the backdoor attack before mitigation; thus there is no impact on the ACC for clean

classifiers (for which no attack is detected). We also found reduction in ACCs when

applying all mitigation methods for a ResNet-18 model trained on CIFAR-10 poisoned

by an all-to-one BadNet attack in column “BadNet”. All the other methods decrease
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ACC by more than 0.03, while our method has little impact on ACC.

Trigger

type

BadNet CB l0 inv l2 inv SP WaNet

A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A

BNA
FPR 0.1390 0.0606 0.1144 0.1092 0.1413 0.0600 0.1976 0.1027 0.1323 0.0656 0.1406 0.0865

TPR 0.9872 0.9508 0.9872 0.9682 0.9967 0.9873 0.9958 0.9793 0.9894 0.9294 0.9959 0.9248

STRIP
FPR 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

TPR 0.9638 0.5147 0.6802 0.2089 0.9995 0.1053 0.9924 0.5272 0.8522 0.3123 0.0202 0.0411

Table 8: TPR and FPR for BNA, compared with STRIP, against all attacks created on

CIFAR-10.

I-BAU ANP NAD ARGD MCR NC BNA

Clean BadNet Clean BadNet Clean BadNet Clean BadNet Clean BadNet Clean BadNet Clean BadNet

0.0684 0.0622 0.1877 0.0478 0.0064 0.0308 0.0343 0.0433 0.0038 0.0371 NA 0.0325 NA 0.0090

Table 9: Drop in ACC when applying I-BAU, ANP, NAD, ARGD, NC and BNA on

ResNet-18 trained on the clean (attack-free) CIFAR-10 dataset and trained on CIFAR-

10 poisoned by the all-to-one BadNet attack.

5.4 Test-Time backdoor-trigger instance detection

Different from other tuning-based backdoor mitigation approaches, our BNA can also

detect backdoor-trigger instances at test-time, as described in Sec. 4.2 and shown in

Fig. 2. Here, we evaluate accuracy of our test-time detector compared with a state-

of-the-art detector named STRIP (Gao, Y. et al., 2019). For any input image during

inference, STRIP blends it with clean images possessed by the defender. The blended

image is fed into the poisoned DNN, with an entropy calculated on the output posteriors.

If the entropy is lower than a prescribed detection threshold, the input is deemed to
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be embedded with the trigger. Here, we set the detection threshold to achieve 15%

FPR for STRIP, a choice which achieves a generally good trade-off between TPR and

FPR. In contrast, BNA does not require setting a detection threshold. In Tab. 8, we

show the True Positive Rate (TPR, i.e., the fraction of backdoor-trigger images correctly

detected) and the False Positive Rate (FPR, i.e., the fraction of clean test images from

the backdoor target class(es) that are falsely detected) for both methods. Although

STRIP performs well on A2O attacks for some trigger types, e.g., BadNet, l0 inv, and l2

inv, its TPR drops drastically on attacks using human-imperceptible triggers, especially

the WaNet attacks. Moreover, it does not perform well on all A2A attacks, with a

largest TPR of only 0.5272. By contrast, BNA is effective for all these attacks – it

detects almost all the backdoor-trigger images, with FPRs comparable to STRIP.

5.5 Mitigation performance against adaptive attacks

A recent backdoor attack proposed by Doan, K.et al. (2021) minimizes a metric similar

to that used by our BNA defense, in order to achieve better stealthiness. This attack can

be viewed as an adaptive attack against our mitigation defense since the trained clas-

sifier will be more sensitive to even a smaller distribution divergence than for ordinary

backdoor attacks. Nevertheless, our method successfully mitigates this attack. In our

experiment on CIFAR-10, the average distribution total variation divergence over all

neurons is reduced from 8067 to 2789. Accordingly, the ACC/ASR before and after

mitigation are 0.9162/0.9978 and 0.8906/0.0072, respectively, with an SIA of 0.8496.
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5.6 Mitigation with a limited amount of clean data

Why tuning-based methods like NC cannot achieve SIAs as high as BNA (which does

not alter the DNN’s parameters) ? Note that NC tunes the classifier using instances

embedded with the estimated trigger but without label flipping. This is equivalent to

minimizing the divergence between internal activation distributions for clean and trig-

gered instances (see Tab. 13 in Apdx. 9), but by altering the DNN’s parameters. Even

for an optimal (zero) divergence, the best achievable SIA of NC is still upper-bounded

by the ACC of the classifier after tuning, which usually drops due to the data insuf-

ficiency. By contrast, the reference distribution for BNA’s divergence minimization

is obtained by feeding clean instances to the poisoned classifier without changing its

parameters; thus, it is a “better” reference with a higher upper-bound ACC.

For the main experiments on CIFAR-10, we preserve 100 clean test images for

all mitigation methods. In other words, all mitigation methods, excluding our BNA,

tune the (around 11 million) trainable parameters of the poisoned ResNet-18 based

only on 1000 clean labelled images (2% of the training set) for a few epochs. Our

method is light-weight, since it only updates the (less than 10 thousand) non-trainable

parameters (i.e., mean and standard deviation). Note that all the mitigation methods use

more clean images in their original papers than in the experiments reported herein. For

example, NC and NAD respectively chose 10% and 5% of the clean training samples

for mitigation. For all mitigation methods, excluding our BNA, the insufficiency of

clean labelled data reduces the ACC by at most 10%. The SIA is upper-bounded by the

ACC after mitigation and is also affected by data insufficiency. This is also verified in

Li, Y. et al. (2021), where they varied the number of clean images from 0% to 20% of
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the clean training samples, with the performance of NAD significantly degraded as the

number of clean samples decreases. Our BNA only aligns internal layer distributions

without affecting the trainable parameters, and thus is more robust when the amount of

clean samples is limited.

To further demonstrate the impact of the number of clean samples on mitigation

performance, for the ResNet-18 trained on CIFAR-10 poisoned by the BadNet attack,

we reduce the number of clean images used by the defender to just 10 images per

class. The corresponding performance of all mitigation methods is shown in Tab. 3.

Although ANP and ARGD effectively de-activate the backdoor attack, both ACC and

SIA dramatically decrease. For NC, I-BAU, NAD, and MCR, the ACC changes a little,

but the attack is still effective, especially for NAD and MCR. However, our BNA is still

effective, with the ASR less than 2% and both ACC and SIA comparable to the ACC

before mitigation.

Data insufficiency is a common phenomenon in real-world applications. For ex-

ample, we use a subset of VGGFace2, which consists of 18 identities, each of which

has 450 training face images and 100 test face images. So, VGGFace2 is much smaller

than other benchmark datasets such as CIFAR-10. We only assign 10 clean images per

class for the defender. The results are shown in Tab. 3. On this high-resolution and in-

sufficient dataset, both NC and I-BAU fail to de-activate the BadNet attack. In contrast,

our BNA successfully reduces the ASR to 0.46% and has ACC and SIA about 89%.
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Conclusion

In this paper, we revealed an activation distribution alteration property for backdoor

attacks. We theoretically proved that by correcting such alteration, backdoor trigger

instances will be correctly classified to their original source classes. Accordingly, we

proposed a post-training backdoor mitigation approach to align distributions of clean

and backdoor-trigger samples through simple transformations, without changing mil-

lions trainable parameters of the classifier, which outperformed methods that use DNN

fine-tuning. The proposed method is robust especially when there is limited amount

of clean data available to the defender, compared with parameter-tuning based meth-

ods. Besides, the proposed method is flexible to be integrated with existing detection

systems. Moreover, our method can detect instances with the trigger during inference.
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Appendix

6 Proof of Theorems in the Main Paper

6.1 Derivation of Eq. (2)

Here, we provide the derivation showing that m∗
j and v∗j in Eq. (2) are the solutions to:

E[a∗j(Xb)] = E[aj(X)|Y = −1] (7)

Var[a∗j(Xb)] = Var[aj(X)|Y = −1] (8)

Based on Eq. (1), the above equations can be expanded as follows:

E[
w⊤

j Xb −m∗
j√

v∗j
γj + βj] = E[

w⊤
j X−mj
√
vj

γj + βj|Y = −1] (9)

Var[
w⊤

j Xb −m∗
j√

v∗j
γj + βj] = Var[

w⊤
j X−mj
√
vj

γj + βj|Y = −1] (10)

We first solve Eq. (10) for (X|Y = −1) ∼ N (−µ, σ2I) and Xb ∼ N (µb, σ
2
bI), which

leads to:

v∗j =
σb
σ
vj (11)

By substituting Eq. (11) into Eq. (9), and since µb = −µ+ ϵ, we get the following:

m∗
j =

√
v∗j
vj
(mj −w⊤

j µ) +w⊤
j µb

=
σb
σ
mj + (

σb
σ

− 1)w⊤
j µ+w⊤

j ϵ.
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6.2 Proof of Theorem 3.1

Proof. First, let’s specify the following vector/matrix representations that will be used

throughout this proof:

W = [w1, · · · ,wJ ]
⊤ ∈ RJ×d

V =


v1 · · · 0

... . . . ...

0 · · · vJ

 ∈ RJ×J V̂ (α) =


v̂1(α) · · · 0

... . . . ...

0 · · · v̂J(α)

 ∈ RJ×J

m =


m1

...

mJ

 ∈ RJ m̂(α) =


m̂1(α)

...

m̂J(α)

 ∈ RJ Γ =


γ1 · · · 0

... . . . ...

0 · · · γJ

 ∈ RJ×J β =


β1

...

βJ

 ∈ RJ

a(·) =


a1(·)

...

aJ(·)

 ∈ RJ â(·|α) =


â1(·|α)

...

âJ(·|α)

 ∈ RJ a∗(·) =


a∗1(·)

...

a∗J(·)

 ∈ RJ

Let X− = (X|Y = −1) ∼ N (−µ, σ2I) denote a random instance from source

class ‘−1’ for simplicity. Let u = u− − u+ with u− and u+ being the weight vectors

associated with the node for class ‘−1’ and the node for class ‘+1’ respectively. Then,

it is easy to see that:

â(Xb|α)
∣∣
α=1

= a(Xb) and â(Xb|α)
∣∣
α=0

= a∗(Xb),
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and taking one step further by setting α = 1, we have the following:

P [g−(Xb|α) > g+(Xb|α)
∣∣α = 1] = P [u⊤â(Xb|α) > 0

∣∣α = 1] (12)

= P [u⊤a(Xb) > 0]

= P [f−(Xb) > f+(Xb)]

≤ 1− ψ. (13)

This is, when α = 1, the classifier is not modified at all; thus the SIA will be no larger

than 1 − ψ since the attack is ψ-successful (see Definition 3.2). On the other hand, by

setting α = 0, we will have the following:

P [g−(Xb|α) > g+(Xb|α)
∣∣α = 0] = P [u⊤â(Xb|α) > 0

∣∣α = 0]

= P [u⊤a∗(Xb) > 0]

= P [f−(X−) > f+(X−)] (14)

≥ 1− η. (15)

That is, when α = 0, the distribution shift will be fully recovered, such that SIA is

equally high as the accuracy of the source class. Recall that Eq. (14) is due to Eq.

(7) and Eq. (8). The inequality (15) is because the classifier specified by f− and f+

is assumed η-erroneous (see Definition 3.1). Here, we prove the theorem by showing

that the partial derivative of P [g−(Xb|α) > g+(Xb|α)] over α is strictly negative when

σb ≤ σ (i.e., triggered instances have smaller standard deviation than clean instances,

which is generally true). To achieve this, we notice that

u⊤â(Xb|α) = u⊤V̂ (α)−
1
2Γ(WXb − m̂(α)) + u⊤β
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follows a Gaussian distribution with

E[u⊤â(Xb|α)] = u⊤V̂ (α)−
1
2Γ(−Wµ+Wϵ− m̂(α)) + u⊤β (16)

Var[u⊤â(Xb|α)] = σ2
b ||W⊤ΓV̂ (α)−

1
2u||22 (17)

We also notice that for source class instances X−

u⊤a(X−) = u⊤V − 1
2Γ(WX− −m) + u⊤β

follows a Gaussian distribution with

E[u⊤a(X−)] = u⊤V − 1
2Γ(−Wµ−m) + u⊤β (18)

Var[u⊤a(X−)] = σ2||W⊤ΓV − 1
2u||22 (19)

Then we have

P [u⊤â(Xb|α) > 0] = 1−Φ(− E[u⊤â(Xb|α)]√
Var[u⊤â(Xb|α)]

) (20)

P [u⊤a(X−) > 0] = 1−Φ(− E[u⊤a(X−)]√
Var[u⊤a(X−)]

) (21)

where Φ is the cumulative distribution function of standard Gaussian. Now let’s con-

sider Eq. (21) first. Since η < 1
2

as we have reasonably assumed (otherwise the classifier

may be worse than a random guess), and also according to Eq. (15), we have

P [u⊤a(X−) > 0] = P [f−(X−) > f+(X−)] >
1

2

Thus, based on Eq. (21) and Eq. (18), we get

u⊤V − 1
2Γ(−Wµ−m) + u⊤β > 0 (22)

Next, let us focus on Eq. (20). Again, we set α = 1. Based on (12)-(13) and the

reasonable assumption that ψ > 1
2

(otherwise the attack is not deemed successful since
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the success rate will be even lower than the accuracy on clean instances), we have

P [u⊤â(Xb|α) > 0
∣∣α = 1] = P [f−(Xb) > f+(Xb)] <

1

2

Then, based on Eq. (20) and Eq. (16), we get

u⊤V − 1
2Γ(−Wµ+Wϵ−m) + u⊤β < 0 (23)

Subtracting Eq. (23) from Eq. (22) we get:

−u⊤V − 1
2ΓWϵ > 0 (24)

Based on Eq. (20), we also have

∂P [g−(Xb|α) > g+(Xb|α)]
∂α

=
∂ E[u⊤â(Xb|α)]√

Var[u⊤â(Xb|α)]

∂α
· ϕ(− E[u⊤â(Xb|α)]√

Var[u⊤â(Xb|α)]
) (25)

where ϕ is the probability density function (PDF) for standard normal distribution.

Based on Eq. (16), Eq. (17), and Eq. (2), we have

E[u⊤â(Xb|α)]√
Var[u⊤â(Xb|α)]

=
u⊤V − 1

2Γ[−Wµ+Wϵ− (αm+ (1− α)m∗)] + (α + (1− α)σb

σ
)u⊤β

σb||W⊤ΓV − 1
2u||2

=
α · u⊤V − 1

2Γ[(σb

σ
− 1)m+ (σb

σ
− 1)Wµ+Wϵ]− α · (σb

σ
− 1)u⊤β

σb||W⊤ΓV − 1
2u||2

+ constant

and thus, based on Eq. (23) and Eq. (24)

∂ E[u⊤â(Xb|α)]√
Var[u⊤â(Xb|α)]

∂α

=
(σb

σ
− 1)[u⊤V − 1

2Γ(m+Wµ−Wϵ)− u⊤β] + σb

σ
u⊤V − 1

2ΓWϵ

σb||W⊤ΓV − 1
2u||2

<0
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when σb ≤ σ. Substitute it into Eq. (25) and given the Gaussian PDF being strictly

positive, we have

∂P [g−(Xb|α) > g+(Xb|α)]
∂α

< 0

7 Datasets, Training settings, and attack settings

7.1 Datasets

In the experiments, we show the effectiveness of our proposed backdoor mitigation

method on several benchmark datasets including CIFAR-10 (Krizhevsky, A. (2009)),

GTSRB (Houben, S. et al. (2013)), CIFAR-100 (Krizhevsky, A. (2009)), ImageNette

(Howard, J. (2020)), and TinyImageNet. CIFAR-10 dataset contains 60,000 32 × 32

color images from 10 classes, with 5,000 images per class for training and 1,000 images

per class for testing . GTSRB has more than 50,000 traffic sign images with different

sizes from 43 classes. Here, we resize all images in GTSRB to 32 × 32. CIFAR-

100 contains 60,000 32 × 32 color images evenly from 100 classes, where 500 images

per class are used for training, while the others are used for testing. ImageNette is a

subset of 10 easily classified classes from Imagenet8, with image size of 256 × 256.

For each class, there are around 900 images for training and 400 images for testing.

TinyImageNet is a subset of ImageNet (Russakovsky, O. et al. (2015)). It contains

100,000 64 × 64 color images evenly distributed in 200 classes (500 training images

8The 10 classes are tench, English springer, cassette player, chain saw, church, French horn, garbage

truck, gas pump, golf ball, and parachute.
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and 50 test images for each class). VGGFace2 is a large-scale face recognition dataset.

It contains more than 3.3 million face images from more than 9000 identities. In our

experiments, we use a subset of VGGFace2, which consists of 18 identities, each of

which has 550 face images. For each class (identity), 450 images are used for training

and 100 images are used for testing. All images are resized to 224× 224 pixels.

7.2 Attack Settings

On CIFAR-10, we consider the following triggers: 1) a 3 × 3 random patch (BadNet)

with a randomly selected location (fixed for all triggered images for each attack) used in

Gu, T. et al. (2019), as visualized in Fig. 3b; 2) an additive perturbation (with size 2/255)

resembling a chessboard (CB) used in Xiang, Z. et al. (2022), as visualized in Fig. 3c;

3) a single pixel (SP) perturbed by 75/255 with a randomly selected location (fixed for

all triggered images for each attack) used by Tran, B. et al. (2018), as visualized in

Fig. 3d; 4) invisible triggers generated with l0 and l2 norm constraints (l0 inv and l2

inv respectively) proposed by Li, S. et al. (2021), as visualized in Fig. 3e and 3f; 5)

a warping-based trigger (WaNet) proposed by Nguyen, T. et al. (2021), as visualized

in Fig. 3g; 6) a Hello Kitty trigger with a blend ratio of α = 0.15 used by Chen, X.

et al. (2017), as is visualized in Fig. 4b; 7) a sinusoidal signal trigger generated by

the horizontal sinusoidal function defined in Barni, M. et al. (2019) with ∆ = 20 and

f = 6, as visualized in Fig. 4c.

Attack settings for CIFAR-10 are summarized in Tab. 10. For all-to-one attacks,

we arbitrarily choose class 9 as the target class, and embed the backdoor triggers in

100 randomly chosen training samples per class (excluding the target class). To achieve
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similarly effective attacks as for other triggers, we poison 900 images per source class in

the all-to-one attack using WaNet. For all-to-all attacks, we embed the backdoor triggers

into 300 images for each class. For effective attacks, we poison 800 training images and

1500 training images in the all-to-all attacks using SP and WaNet, respectively.

For CIFAR-10, we also launched the label-consistent (CL) backdoor attack pro-

posed in Turner, A. et al. (2019), as visualized in Fig. 5b. We followed the same settings

as reported in their paper. Specifically, we used Projected Gradient Descent (PGD) to

generate adversarial perturbations bounded by a Linf maximum perturbation of ϵ = 16.

A 3 × 3 white square is embedded at the four corners of the perturbed images. Half

(2500) of the target class training images are poisoned by the CL attack. All non-target

class test images are also poisoned in the same way for performance evaluation.

Attack settings for other datasets are summarized in Tab. 12. Due to the insuffi-

ciency of data, we only conduct all-to-one attacks on these datasets for effective attacks.

We arbitrarily choose class 0 as the target class for CIFAR-100, GTSRB, TinyImageNet,

and VGGface2, and class 9 for ImageNette. All the classes other than the target class are

source classes of the attack. For CIFAR-100, we use the same BadNet, l0 inv, and l2 inv

triggers as for CIFAR-10. We increase the perturbation size to 6/255 for the CB pattern

for an effective backdoor attack. For each attack, we poison 10 images per source class

using the above triggers. Triggers SP and WaNet are not considered since we cannot

launch a successful backdoor attack using these triggers on CIFAR-100. For GTSRB, in

addition to the same triggers as for CIFAR-100, we also use the warping-based trigger

(WaNet). We poison 2% of the training images per source class using the BadNet and l2

inv triggers, and 5% of the training images per source class with the CB and l0 inv trig-
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gers. To achieve similarly effective attacks, we embed the WaNet trigger into 24% of

the training images per source class. For TinyImageNet, ImageNette, and VGGFace2,

we only consider BadNet as the trigger, as the DNN cannot learn the backdoor mapping

using the other (relatively simple and small) triggers in datasets that are much more

complicated than CIFAR-10. To successfully plant backdoors, we increase the size the

the BadNet patch to 6 × 6 for TinyImageNet and to 21 × 21 for ImageNette and VG-

GFace2. We embed the trigger in 10 training images per source class in TinyImageNet

and VGGFace2, and in 5% of the training images per source class for ImageNette.

7.3 Training Settings

Training settings for the 5 datasets are shown in Table 11, except for the case of CIFAR-

10 poisoned by the CL attack. We train a ResNet-18 (He, K. et al. (2016)) on CIFAR-10

and CIFAR-100 for 30 epochs and 40 epochs, respectively. We train a ResNet-34 (He,

K. et al. (2016)) on both TinyImageNet and ImageNette for 90 epochs. For GTSRB, we

train a MobileNet (Howard, A. et al. (2017)) for 60 epochs. For VGGFace2, we fine-

tune a pre-trained VGG-16 model (Simonyan, K. et al., 2015) with batch normalization

for 90 epochs. For all models, we use the Adam optimizer (Kingma, D. et al. (2015)) for

parameter learning and a scheduler to decay the learning rate of each parameter group

by 0.1 every “scheduler step size” epochs (shown in the table). We choose batch size

32 for both CIFAR-10 and CIFAR-100, 64 for GTSRB and ImageNette, and 128 for

TinyImageNet. For CIFAR-10 poisoned by the CL attack, we train a ResNet-18 model

following the training settings in the CL paper Turner, A. et al. (2019) for an effective

attack. Specifically, we use a stochastic gradient descent (SGD) optimizer for parameter
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learning, with a momentum of 0.9, a weight decay of 0.0002, and batch size of 50. The

initial learning rate of 0.1 is divided by 10 every 30 epochs. The model is trained for

100 epochs.

Trigger type
BadNet CB l0 inv Blend

A2O A2A A2O A2A A2O A2A A2O

# poisoned

per class
100 300 100 300 100 300 100

l0 norm 3× 3 3× 3 NA NA 1× 6 1× 6 NA

l2 norm NA NA 0.3074 0.3074 NA NA NA

Trigger type
l2 inv SP WaNet SIG

A2O A2A A2O A2A A2O A2A A2O

# poisoned

per class
100 300 100 800 900 1500 100

l0 norm NA NA NA NA NA NA NA

l2 norm 1.6106 1.6106 0.5094 0.5094 NA NA NA

Table 10: Attack configurations on CIFAR-10

Dataset CIFAR-10 CIFAR-100 TinyImageNet ImageNette GTSRB VGGFace2

DNN architecture ResNet-18 ResNet-18 ResNet-34 ResNet-34 MobileNet VGG-16

Optimizer Adam Adam Adam Adam Adam Adam

Batch size 32 32 128 64 64 32

Epochs 30 40 90 90 60 90

Initial learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

scheduler step size 10 10 30 30 20 30

Table 11: Training configurations of the 6 datasets used in our experiments.

8 Pattern Estimation and Backdoor Detection

For BNA, following Sec. 4.2, we first perform detection by reverse-engineering a back-

door trigger for each class pair. For patch triggers like BadNet, we use the objective
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Trigger type
CIFAR-100 TinyImageNet ImageNette

BadNet CB l0 inv l2 inv BadNet BadNet

Target class 0 0 0 0 0 9

# poisoned

per class
10 10 10 10 10 5%

l0 norm 3× 3 NA 1× 6 NA 6× 6 21× 21

l2 norm NA 0.9222 NA 1.6106 NA NA

Trigger type
GTSRB VGGFace2

BadNet CB l0 inv l2 inv WaNet BadNet

Target class 0 0 0 0 0 0

# poisoned

per class
2% 5% 5% 2% 24% 10

l0 norm 3× 3 NA 1× 6 NA NA 21× 21

l2 norm NA 0.9222 NA 1.6106 NA NA

Table 12: Attack configurations on GTSRB, CIFAR-100, ImageNette, TinyImageNet,

and VGGFace2.

(a) clean (b) BadNet (c) CB (d) SP

(e) l0 inv (f) l2 inv (g) WaNet

Figure 3: Example of CIFAR-10 images embedded with the backdoor triggers consid-

ered in our experiments.
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(a) clean (b) Blend attack (c) SIG attack

Figure 4: Example of CIFAR-10 images poisoned by the Blend and SIG backdoor

attacks.

(a) clean (b) CL attack

Figure 5: Example of CIFAR-10 images poisoned by the label-consistent backdoor

attack.

function from Wang, B. et al. (2019) for trigger reverse-engineering. For other more

subtle, perturbation-based trigger types, we use the objective function from Xiang, Z.

et al. (2022) for reverse-engineering. The detection statistic is the reciprocal of the

l0 norm of the relaxed masks of the estimated patch triggers and l2 norm of reverse-

engineered perturbation-based triggers. Then we feed the statistics obtained from the

estimated trigger to an anomaly detector.

Our anomaly detector is based on MAD, which is a classical approach also used by

Wang, B. et al. (2019); Chen, H. et al. (2019); Wang, R. et al. (2020). It first calculates

the absolute deviation between all detection statistics (the reciprocal of l0 norm of patch

triggers and l2 norm of perturbation-based triggers) and the median, and the median of

the absolute deviations is called Median Absolute Deviation (MAD). For a class pair
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and its corresponding estimated trigger, if the trigger’s anomaly score, which is defined

as the absolute deviation divided by MAD, is larger than a given threshold, it is detected

as a backdoor class pair. A wide range of detection thresholds detect the attack, as

shown in Fig. 6 and Fig. 7. These figures show the histograms of the anomaly scores

for all class pairs under all-to-one and all-to-all attacks, respectively. Here, we set the

detection threshold at 7, which easily catches all the backdoor class pairs under all the

attacks, except for the all-to-all BadNet attack and both attacks using the WaNet trigger.

For the all-to-all BadNet attack, the outlier detector finds two source classes – 0

and 8 – for the target class 1, where 0-1 is the true source-target class pair and 8-1 is

falsely detected, as shown in Fig. 7a. The l0 norm of the trigger estimated on class 0

clean images is 3.02, and that estimated on class 8 images is 7.95. If class 0 and 8

are both the source classes involved in the backdoor attack, then the trigger estimated

on the clean images from class 0 and 8 should both have a small l0 norm. Otherwise,

the trigger estimated using class 8 images is an intrinsic backdoor pattern (Xiang, Z.

et al. (2022); Liu, Y. et al. (2022); Tao, G. et al. (2022)), and 0-1 is the true source class

pair, since the trigger of 0-1 has smaller size than 8-1. By optimizing on clean images

from class 0 and 8, the l0 norm of the trigger that causes mis-classification to class 1

with high confidence is 27.18 – much larger than the triggers estimated on either class

0 images or class 8 images. Thus, we detect 0-1 as the true backdoor class pair and

discard the trigger for class pair 8-1 in backdoor mitigation.

For the attacks using warping-based triggers (WaNet), unlike the other attacks, the

trigger size for clean class pairs and backdoor class pairs are both small. However, there

is still a “gap” between the anomaly scores of clean class pairs and backdoor class pairs,
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as shown in Fig. 6f and 7f. The outlier detector successfully detects all the backdoor

class pairs by using a threshold at 3.

(a) BadNet (b) CB

(c) SP (d) l0 inv

(e) l2 inv (f) WaNet

Figure 6: Histograms of anomaly scores for each class pair under all all-to-one attacks.
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(a) BadNet (b) CB

(c) SP (d) l0 inv

(e) l2 inv (f) WaNet

Figure 7: Histograms of anomaly scores for each class pair under all all-to-all attacks.
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9 Distribution divergences

As stated in Thm. 3.1, for our backdoor mitigation method, SIA monotonically in-

creases as the divergence between clean instances and backdoor-trigger instances de-

creases. We show the ACC, ASR, and SIA for our method against all all-to-one attacks

on CIFAR-10 in Tab. 1. We also show the corresponding distribution divergences un-

der all attacks in Tab. 13. Tab. 13 shows the average TV distance, JS divergence, and

KL divergence between distributions of penultimate layer activations of clean images

and backdoor-trigger images in clean ResNet-18 (Clean), backdoor poisoned ResNet-

18 (Poisoned), backdoor poisoned ResNet-18 mitigated by NC (NC), and backdoor

poisoned ResNet-18 mitigated by BNA (BNA). For the backdoor poisoned ResNet-18

mitigated by BNA, we use TV divergence in backdoor mitigation. For all attacks, all

three divergences are small for a clean DNN, while relatively large for a backdoor-

poisoned DNN. The distribution of backdoor-trigger instances severely deviates from

that of clean instances. With our mitigation method (BNA), the distribution alteration is

significantly relieved. All the three divergences are drastically reduced, which is consis-

tent with the results in Tab. 1. NC also relieves distribution alteration – it even performs

better than ours with regard to distribution divergences. However, NC cannot achieve

SIA as high as our BNA (see Tab. 1). It tunes model parameters based on insufficient

data (i.e., the data assumed to be available to the defender); therefore the ACC of the

DNN drops after parameter tuning. The achievable SIA of NC also drops since it is

upper-bouned by the ACC.
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Trigger type BadNet CB l0 inv l2 inv SP WaNet

KL divergence

Clean 0.0022 0.0010 0.0013 0.0085 0.0017 0.0037

Poisoned 0.3211 0.752 0.4029 0.8730 0.4385 0.2708

BNA 0.0291 0.0141 0.0337 0.0402 0.0146 0.0389

NC 0.0045 0.0044 0.0092 0.0841 0.0174 0.0077

JS divergence

Clean 0.0239 0.0166 0.0185 0.0461 0.0214 0.0311

Poisoned 0.2867 0.3528 0.3275 0.3898 0.3041 0.2215

BNA 0.0952 0.0583 0.0847 0.0986 0.0582 0.0611

NC 0.0362 0.0350 0.0477 0.1440 0.0604 0.0450

TV distance

Clean 634.1953 376.4219 461.9531 1240.3359 554.3594 805.9648

Poisoned 8877.2734 11177.3867 9203.9609 12482.4336 10119.3281 7237.7812

BNA 2463.582 1705.0156 2490.457 2794.7578 1761.2148 1749.2461

NC 774.78 822.13 1284.78 3799.22 1905.65 1255.89

Table 13: Average TV distance, JS divergence, and KL divergence between distribu-

tions of clean instances and backdoor-trigger instances in clean DNN, poisoned DNN,

and poisoned DNN mitigated by BNA using TV divergence.

10 Choice of divergence forms

In Tab. 1 and 5, we only show the results for BNA using TV distance in backdoor

mitigation (Eq. 3). Here we show that our method is not sensitive to the choice of

distribution divergence form. We respectively use TV distance, JS divergence, and KL

divergence to mitigate the 5 all-to-one CB attacks against CIFAR-10, and show the

average distribution similarity measured by the three measurements after mitigation.

The distribution similarity is calculated on the penultimate layer activations. As shown

in Tab. 14, the distribution alteration is significantly relieved after mitigation, regardless
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of the divergence form used in mitigation (Eq. 3).

divergence form used in mitigation →

distribution similarity after mitigation ↓
TV JS KL

TV 1742 1730 1719

JS 0.0622 0.06172 0.0613

KL 0.0165 0.0163 0.0161

Table 14: Average TV, JS, and KL between clean instances and backdoor-trigger in-

stances using TV, JS, and KL for measuring distribution similarity in BNA-based back-

door mitigation.

11 Impact of perturbation size and poisoning ratio on

backdoor mitigation

To observe the impact of attack settings on the performance of backdoor mitigation

methods, we tune the poisoning ratio (i.e., the number of poisoned instances per source

class) and perturbation size used in all-to-one CB attacks, and apply all the mitigation

methods on these poisoned DNNs. The results are shown in Tab. 15. Generally, the

metrics for all methods decrease with increasing poisoning ratio and perturbation size.

Although the performance for our BNA slightly declines as the attack is strengthened,

our method still outperforms other methods in terms of SIA. BNA also achieves the best

or comparable ACC and ASR to other methods.
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Mitigation method the number of poisoned instances per class perturbation size (*255)

50 100 150 200 250 2 3 4 5 6

NC

ACC 0.8953 0.8734 0.8826 0.8943 0.8799 0.8734 0.8918 0.8667 0.8825 0.8709

ASR 0.0056 0.0238 0.0148 0.0057 0.0064 0.0238 0.0042 0.0157 0.0133 0.0065

SIA 0.8515 0.8412 0.8552 0.8579 0.8532 0.8412 0.8560 0.8283 0.8194 0.7883

I-BAU

ACC 0.8708 0.8473 0.8818 0.8941 0.8594 0.8473 0.8646 0.8822 0.9004 0.8919

ASR 0.0789 0.0043 0.0712 0.5074 0.0460 0.0043 0.3052 0.0247 0.0011 0.2048

SIA 0.6564 0.8399 0.7563 0.3802 0.6715 0.8399 0.5823 0.7712 0.8102 0.5153

ANP

ACC 0.8523 0.8271 0.8612 0.8204 0.7614 0.8271 0.8486 0.8156 0.8418 0.8249

ASR 0.1940 0.8535 0.5401 0.0031 0.0043 0.8535 0.9836 0.6394 0.3670 0.2548

SIA 0.5158 0.1047 0.2440 0.6157 0.3701 0.1047 0.0142 0.1911 0.3238 0.4606

NAD

ACC 0.8942 0.8745 0.8949 0.8902 0.8674 0.8767 0.8823 0.8745 0.8835 0.8990

ASR 0.0147 0.0086 0.0095 0.0106 0.0125 0.0070 0.0096 0.0086 0.0642 0.0586

SIA 0.8646 0.8504 0.8709 0.8695 0.8514 0.8631 0.8574 0.8504 0.8070 0.7896

ARGD

ACC 0.8743 0.8832 0.8693 0.8659 0.8415 0.8832 0.8872 0.8619 0.8508 0.8394

ASR 0.0106 0.0108 0.0097 0.0117 0.0121 0.0108 0.0073 0.0083 0.0085 0.0153

SIA 0.8590 0.8685 0.8528 0.8482 0.8267 0.8685 0.8574 0.8467 0.8373 0.8196

BNA

(ours)

ACC 0.9112 0.9094 0.9098 0.9102 0.9015 0.9094 0.9041 0.9079 0.8992 0.8912

ASR 0.0095 0.0141 0.0121 0.0170 0.0090 0.0141 0.0395 0.0222 0.0109 0.0388

SIA 0.8851 0.8837 0.8728 0.8840 0.8662 0.8851 0.8783 0.8711 0.8814 0.8435

Table 15: ACC, ASR, and SIA for BNA, NC, I-BAU, ANP, NAD, and ARGD as a

function of (1) the number of poisoned instances injected into the training set; (2) the

perturbation size under all-to-one CB attack.
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