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Poisoning Attacks
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Poisons Training Mis-behavior
Error-generic attack

Error-specific attack

Attacker’s ability:

Inject malicious instances 
into the training set of 
the victim model.

Attacker’s goal:

Error-generic attack, degrading the overall 
performance.
Error-specific attack, causing mis-classification 
only for specific samples/classes.

BIC-based Mixture Model Defense against Data Poisoning Attacks on Classifiers. Xi Li et al. TKDE.
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Poisoning Attacks - Label Flipping Attack
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Flip labels of a subset of red to blue. 
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Poisoning Attacks - Label Flipping Attack
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Decision boundary significantly changes.
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Limitation of Existing Work
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• Hyper-parameter tuning
• Suitable for specific classifiers



Challenges in Addressing Label-Flipping Attacks
Challenge 1 – Presence of poisoning is unknown.
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Challenges in Addressing Label-Flipping Attacks
Challenge 1 – Presence of poisoning is unknown.
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Solution for Addressing Label-Flipping Attacks
Solve challenge 1 -- Isolate poisoned samples from clean samples.
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Challenges in Addressing Label-Flipping Attacks
Challenge 2 – No clean samples available for detection.
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Solution for Addressing Label-Flipping Attacks
Solve challenge 2 – Identify and remove the most likely poisoned 
group in each step.
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Solution for Addressing Label-Flipping Attacks
Solve challenge 2 – Identify and remove the most likely poisoned 
group in each step.
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Challenges in Addressing Label-Flipping Attacks
Q: How to identify the most likely poisoned group?
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Solution for Addressing Label-Flipping Attacks

Observation 1:
The poisoned group is better 
represented by density functions of 
red.
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Q: How to identify the most likely 
poisoned group?



Solution for Addressing Label-Flipping Attacks
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Re-assign poisoned samples to red 
would increase data likelihood.

Observation 1:
The poisoned group is better 
represented by density functions of 
red.

Q: How to identify the most likely 
poisoned group?



Solution for Addressing Label-Flipping Attacks
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Observation 2:
No need to keep the density function 
for the poisoned group.

Q: How to identify the most likely 
poisoned group?



Solution for Addressing Label-Flipping Attacks
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Removing the poisoned density 
function would decrease model 
complexity.

Observation 2:
No need to keep the density function 
for the poisoned group.

Q: How to identify the most likely 
poisoned group?



Solution for Addressing Label-Flipping Attacks

A: Jointly optimize data likelihood 
and model complexity.
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Q: How to identify the most likely 
poisoned group?



A: Jointly optimize data likelihood 
and model complexity.

Solution for Addressing Label-Flipping Attacks
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Aligns with minimizing Bayesian
 Information Criterion (BIC)

Q: How to identify the most likely 
poisoned group?



A: Minimize Bayesian Information 
Criterion (BIC).

Solution for Addressing Label-Flipping Attacks
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Q: How to identify the most likely 
poisoned group?



Bayesian Information Criterion (BIC)
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– Set of parameters specifying density functions.
    – Cost for a single parameter.
    – The dataset. 

Model 
Complexity

Data 
Likelihood

The Bayesian Information Criterion (BIC) function:



Method Overview

Key idea:
1. Isolation: Isolate poisoned samples.
2. Identification: Identify the most likely poisoned group in each 

step consistent with BIC minimization. 
3. Sanitization: Remove identified poisoned samples from the 

training set.
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Method Overview
Isolation -> Identification -> Sanitization
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Represent the 
distribution by a 
mixture of density 
functions. 



Method Overview
Isolation -> Identification -> Sanitization
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Group 3

Case 1: Clean. 

Case2: Poisoned, remove it.

Case 3: Poisoned, revise it.



Method Overview
Isolation -> Identification -> Sanitization
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Group 3

Case 1: Clean. 
Do nothing.
Calculate the BIC value => BIC1.



Method Overview
Isolation -> Identification -> Sanitization
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Class 2

Group 1
Group 2

Group 3

Case 2: Poisoned, remove it. 
Re-assign all samples.
Remove the density function.
Calculate the BIC value => BIC2.

Class 1
Group 1

Consistent with likelihood maximization.



Method Overview
Isolation -> Identification -> Sanitization
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Remove the density function.
Calculate the BIC value => BIC2.



Method Overview
Isolation -> Identification -> Sanitization
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Method Overview
Isolation -> Identification -> Sanitization
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Class 2

Group 1
Group 2

Group 3

Case 3: Poisoned, revise it.
Re-assign partial samples.
Update the density function.
Calculate the BIC value => BIC3.

Class 1
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Poisoned
Clean



Method Overview
Isolation -> Identification -> Sanitization
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Class 2

Group 1

Group 3

Case 3: Poisoned, revise it.
Re-assign partial samples.
Update the density function.
Calculate the BIC value => BIC3.Group 2



Method Overview
Isolation -> Identification -> Sanitization
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Class 2

Group 1

Group 3

Case 3: Poisoned, revise it.
Re-assign partial samples.
Update the density function.
Calculate the BIC value => BIC3.Group 2



Method Overview
Isolation -> Identification -> Sanitization
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Class 2

Group 1
Group 2

Group 3

Case 1: Clean. => BIC1 

Case 2: Poisoned, remove it. => BIC2

Case 3: Poisoned, revise it. => BIC3

Note: BIC calculation only.
No sample re-assignment and parameter update.



Method Overview
Isolation -> Identification -> Sanitization
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Class 2

Group 1
Group 2

Group 3

Case 1: Clean. => BIC1 

Case2: Poisoned, remove it. => BIC2

Case 3: Poisoned, revise it. => BIC3

BIC2 Choose the 
minimal BIC



Method Overview
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Class 1

Group 1
Group 2

Class 2

Group 1
Group 2

Group 3

Isolation -> Identification -> Sanitization

BIC2
BIC3

BIC1

BIC1
BIC3

The group with the 
smallest BIC is the 
most likely poisoned 
one.



Method Overview
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Class 1

Group 1
Group 2

Class 2

Group 1
Group 2

Group 3

Isolation -> Identification -> Sanitization

BIC2
BIC3

BIC1

BIC1
BIC3

According to case2:
Re-assign samples.
Remove density 
function. 



Method Overview
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Class 1

Group 1
Group 2

Class 2

Group 1

Group 3

Isolation -> Identification -> Sanitization

Repeat optimizing 
until there’s no further 
changes in BIC.



Method Overview
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Class 1
Class 2

Isolation -> Identification -> Sanitization

Remove:
Samples re-assigned 
to other classes are 
deemed poisoned.



Method Effectiveness
Datasets: TREC05 (Binary classification).
Victim models: SVM, LSTM, ...
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BIC cost, SVM ACC, and the number of detected poisoned 
samples vs. the number of visited components. 

Test ACC increases 
as BIC decreases.



Method Effectiveness
Datasets: 20NG, MNIST, CIFAR10, STL10 (Multi-class classification).
Victim models: SVM, logistic regression, LSTM, ResNet-18.
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(a) (b)
BIC cost, SVM ACC, and the number of detected poisoned samples versus the number of visited 
components under attacks (a) attack 3 against 20NG; (b) attack 3 against MNIST.



Method Effectiveness
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T-statistics comparing the performance of our method to other methods.

High t-statistics show our 
significant improvement over 
other detection methods.
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Conclusion
The proposed method:
• Effective – solve the practical challenging label-flipping attack.
• Universal – applicable to various model structures and datasets.
• Unsupervised – no hyper-parameter tuning.
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