BIC-based Mixture Model Defense against Data Poisoning Attacks on Classifiers

Xi Li, David Miller, Zhen Xiang, and George Kesidis

IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024

Poisoning Attacks

PennState

Poisoning Attacks

Poisoning Attacks - Label Flipping Attack

Poisoning Attacks - Label Flipping Attack

BIC-based Mixture Model Defense against Data Poisoning Attacks on Classifiers. Xi Li et al. TKDE.

PennState

Limitation of Existing Work

- Hyper-parameter tuning
- Suitable for specific classifiers

Challenges in Addressing Label-Flipping Attacks

Challenge 1 – Presence of poisoning is **unknown**.

Class 2 Class 1 \bigcirc 8 X

28

poisoned?

Solve challenge 1 -- Isolate poisoned samples from clean samples.

Challenges in Addressing Label-Flipping Attacks

Challenge 2 – No clean samples available for detection.

Solve challenge 2 – Identify and remove the **most likely poisoned** group in each step.

Solve challenge 2 – Identify and remove the **most likely poisoned** group in each step.

Challenges in Addressing Label-Flipping Attacks

Q: How to identify the **most likely poisoned** group?

Q: How to identify the **most likely poisoned** group?

Observation 1:

The poisoned group is **better represented** by density functions of red.

Q: How to identify the **most likely poisoned** group?

Observation 1:

The poisoned group is **better represented** by density functions of red.

Re-assign poisoned samples to red would increase data likelihood.

Q: How to identify the **most likely poisoned** group?

Observation 2:

No need to keep the density function for the poisoned group.

Q: How to identify the **most likely poisoned** group?

Observation 2:

No need to keep the density function for the poisoned group.

Removing the poisoned density function would **decrease model complexity**.

Q: How to identify the **most likely poisoned** group?

A: Jointly optimize data likelihood and model complexity.

- Q: How to identify the **most likely poisoned** group?
- A: Minimize Bayesian Information Criterion (BIC).

Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) function:

heta – Set of parameters specifying density functions. k – Cost for a single parameter. \mathcal{D} – The dataset.

Key idea:

- 1. Isolation: Isolate poisoned samples.
- 2. Identification: Identify the most likely poisoned group in each step consistent with **BIC** minimization.
- **3.** Sanitization: Remove identified poisoned samples from the training set.

Isolation -> Identification -> Sanitization

Isolation -> Identification -> Sanitization

BIC-based Mixture Model Defense against Data Poisoning Attacks on Classifiers. Xi Li et al. TKDE.

Isolation -> Identification -> Sanitization

BIC = $|\theta|k - L(\mathcal{D};\theta)$

Case 1: Clean. Do nothing. Calculate the BIC value => BIC1.

Isolation -> Identification -> Sanitization

Isolation -> Identification -> Sanitization

BIC = $|\theta|k - L(\mathcal{D};\theta)$

Case 2: Poisoned, remove it. Re-assign all samples. Remove the density function. Calculate the BIC value => **BIC2**.

Isolation -> Identification -> Sanitization

BIC = $|\theta|k - L(\mathcal{D};\theta)$

Case 2: Poisoned, remove it.

Re-assign **all** samples. Remove the density function. Calculate the BIC value => **BIC2**.

Isolation -> Identification -> Sanitization

PennState

Isolation -> Identification -> Sanitization

BIC = $|\theta|k - L(\mathcal{D};\theta)$

Case 3: Poisoned, revise it. Re-assign partial samples. Update the density function. Calculate the BIC value => BIC3.

Isolation -> Identification -> Sanitization

BIC = $|\theta|k - L(\mathcal{D};\theta)$

Case 3: Poisoned, revise it.

Re-assign **partial** samples. Update the density function. Calculate the BIC value => **BIC3**.

Isolation -> Identification -> Sanitization

53

PennState

Isolation -> Identification -> Sanitization

Isolation -> Identification -> Sanitization

The group with the **smallest BIC** is the most likely **poisoned** one.

Isolation -> Identification -> Sanitization

Isolation -> Identification -> Sanitization

PennState

Isolation -> Identification -> Sanitization

Method Effectiveness

Datasets: TREC05 (Binary classification). Victim models: SVM, LSTM, ...

BIC cost, SVM ACC, and the number of detected poisoned samples vs. the number of visited components.

Method Effectiveness

Datasets: 20NG, MNIST, CIFAR10, STL10 (Multi-class classification). Victim models: SVM, logistic regression, LSTM, ResNet-18.

BIC cost, SVM ACC, and the number of detected poisoned samples versus the number of visited components under attacks (a) attack 3 against 20NG; (b) attack 3 against MNIST.

Method Effectiveness

High t-statistics show our **significant improvement** over other detection methods.

Attack	0	1	2	3	4	Э
20NG						
vs KNN-D[1	14.17	5.69	9.27	9.27	20.04	9.05
vs SVD-D[2]	2.12	24.24	7.58	16.57	19.95	17.85
vs GS-D[3]	3.81	4.98	10.03	17.65	16.71	12.50
CIFAR10						
vs DPA[4]	7.18	12.65	11.89	7.57	7.74	22.22
vs FA [5]	6.09	8.20	15.31	15.39	12.92	7.61

T-statistics comparing the performance of our method to other methods.

[1] Andrea Paudice, Luis Munoz-Gonzalez, and Emil C. Lupu. Label Sanitization Against Label Flipping Poisoning Attacks. ECML PKDD Workshops. 2018.

[2] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair Stewart. Sever: A Robust Meta-Algorithm for Stochastic Optimization. ICML. 2019.

[3] Sanghyun Hong, Varun Chandrasekaran, Yigitcan Kaya, Tudor Dumitras, and Nicolas Papernot. On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping. 2020.

[4] Alexander Levine and Soheil Feizi. Deep Partition Aggregation: Provable Defenses against General Poisoning Attacks. ICLR. 2021.

[5] Wenxiao Wang, Alexander Levine, and Soheil Feizi. Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation. ICML. 2022.

Conclusion

The proposed method:

- Effective solve the practical challenging label-flipping attack.
- Universal applicable to various model structures and datasets.
- Unsupervised no hyper-parameter tuning.

