
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

BIC-based Mixture Model Defense against
Data Poisoning Attacks on Classifiers:

A Comprehensive Study
Xi Li, David J. Miller, Zhen Xiang and George Kesidis

Abstract—Data Poisoning (DP) is an effective attack that causes trained classifiers to misclassify their inputs. DP attacks significantly
degrade a classifier’s accuracy by covertly injecting attack samples into the training set. Broadly applicable to different classifier
structures, without strong assumptions about the attacker, an unsupervised Bayesian Information Criterion (BIC)-based mixture model
defense against “error generic” DP attacks is herein proposed that: 1) addresses the most challenging embedded DP scenario wherein,
if DP is present, the poisoned samples are an a priori unknown subset of the training set, and with no clean validation set available; 2)
applies a mixture model both to well-fit potentially multi-modal class distributions and to capture poisoned samples within a small
subset of the mixture components; 3) jointly identifies poisoned components and samples by minimizing the BIC cost defined over the
whole training set, with the identified poisoned data removed prior to classifier training. Our experimental results, for various classifier
structures and benchmark datasets, demonstrate the effectiveness of our defense under strong DP attacks, as well as its superiority
over other DP defenses.

Index Terms—Adversarial learning, Data poisoning attack, Anomaly detection, Mixture model

✦

1 INTRODUCTION

L EARNING-BASED models have shown impressive per-
formance in various domains, e.g., computer vision and

natural language processing. However, machine learning is
vulnerable to maliciously crafted inputs. Interest in Adver-
sarial Learning (AL) has grown dramatically in recent years,
focused on devising attacks against machine learning and
defenses against same. Three important AL attacks are [37]:
data poisoning (e.g., [1], [8], [22], [31], [34], [35], [54]), test-
time evasion (e.g., [2], [32], [43]), and reverse engineering
(e.g., [41], [42]). In this work, we address Data Poisoning
(DP) attacks against models trained for classification tasks.

DP attacks involve the insertion of “poisoned” samples
into the training set of a classifier. In this paper, we address
“error generic” DP attacks (hereafter called DP attacks) [4],
which aim to degrade the overall classification accuracy1. To
effectively mislead classifier training using relatively few
poisoned samples, an attacker introduces feature collision
[25] by e.g. flipping the class labels of some training samples.
DP attacks have been successfully demonstrated against
Support Vector Machines (SVMs) [54], Logistic Regression
(LR) models [17], auto-regressive models [1], collaborative
filtering systems [31], differentially-private learners [35],
and neural networks (NN) [38].

In the general setting (and also the most challenging one
for the defender), considered here, the defender does not
know whether an attack is present, and if so, which samples
are poisoned and which class(es) are corrupted. Moreover,

• Xi Li, David J. Miller, Zhen Xiang and George Kesidis are with the
School of Electrical Engineering and Computer Science, Pennsylvania
State University, State College, PA, 16803.
E-mail: {xzl45, djm25, zux49, gik2}@psu.edu

1. Error-specific attacks, particularly backdoor attacks involving spe-
cific backdoor patterns and source and target classes, e.g., [8], [22], [34],
are not the focus herein.

there is no data known to be free of poisoning. This embedded
DP scenario is of great practical interest, and yet remains
largely unsolved. Studies on defending against such attacks
either are tailored to a specific type of classifier (e.g., SVM
[27], LR [17]) or make strong assumptions (e.g., availability
of a clean validation set for use by the defender [40]). The
proposed method does not make any such assumptions,
does not require a clean (attack-free) validation set, and can
be deployed to protect various types of classifiers.

Poisoned samples are generally atypical of the distri-
bution of the class to which they are labeled. We thus
apply mixture modeling [16], [36] to accurately explain the
potentially multi-modal data and to capture poisoned sam-
ples within a subset of mixture components. We make the
following observations. If the poisoned samples are typical
of another class (different from the class to which they are
labeled), we expect that re-distributing them to other classes
should increase the overall data likelihood. Furthermore,
removing a poisoned component will reduce the model
complexity of a mixture. Thus, both the data likelihood and
model complexity terms that constitute the Bayesian Infor-
mation Criterion (BIC) model selection criterion [47] should
improve when data poisoning is mitigated. Accordingly, we
propose to make poisoned sample inferences consistent with
minimizing BIC. We first apply mixture modelling sepa-
rately to each class, with the number of components chosen
to minimize the BIC criterion. Then we assess components
for possible poisoning, with a detected component either
removed or revised (whichever results in a lower BIC cost).
After poisoned samples have been detected and removed,
the classifier is trained on the sanitized data set.

In summary, our BIC-based mixture model defense is:
• Novel: We are the first to formulate a BIC-based defense

for unsupervised DP attack mitigation.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

• Practical: We address the practical and challenging em-
bedded DP attack scenario.

• Effective: Extensive experiments on benchmark datasets,
for various classifier structures, demonstrate the effec-
tiveness of our defense and its superiority over other
defenses.

The rest of the paper is organized as follows: We first
review several existing DP studies in Sec. 2. Then we define
our threat model in Sec. 3. In Sec. 4, we propose our BIC-
based mixture model defense. Experiments on two-class
and multi-class tasks are presented in Sec. 5.2 and Sec. 5.3,
respectively. Sec. 6 assesses computational complexity of our
method. Sec. 7 identifies limitations and future work.

2 RELATED WORK

A strategy for defending against data poisoning attacks
is “data sanitization”, i.e., identifying and cleansing the
attack samples as training set outliers. Outlier identification
is divided into two types – supervised and unsupervised.
Some supervised detection methods train a binary discrim-
inator based on labeled examples of anomalies and normal-
ities, e.g., [55]. However, such a learned discriminator may
only reliably identify known anomalies, similar to those seen
during the discriminator’s training. Furthermore, anomalies
(attack instances) may be rarer and more difficult to collect
than “normalities”, resulting in class imbalance in training,
thus negatively impacting the discriminator’s performance.

Other supervised detection methods are more akin to un-
supervised anomaly detection methods, except that they pos-
sess hyper-parameters whose setting requires either a clean
validation set or a labeled set of “normalities” and “anoma-
lies”, e.g., [6], [15], [25], [30], [44], [45], [49], [50], [52]. On the
other hand, truly unsupervised detection methods do not
require labeled examples of “normalities” and “anomalies”,
and are analogous to unsupervised clustering methods.
They model data distributions and flag potential outliers,
e.g., [5], [33], [53], [57] and the method proposed herein.
[5] proposed to leverage human intelligence to improve the
accuracy of unsupervised detectors by correctly identifying
outliers from machine-suggested candidates. However, such
an approach is time-consuming, costly, and only suitable for
domains where humans are skilled at analyzing data.

In practice there will always be unknown attacks, with
no labeled examples available. It has been observed that the
performance of supervised detectors may fare poorly on un-
known attacks [37]. On the theoretical front, [50] generates
an upper bound on the efficacy of any DP attack against
a defender performing outlier removal and margin-based
loss minimization. They also generate an attack that nearly
achieves this upper bound. However, their attack requires
full knowledge of the clean training set and cannot handle
non-convex loss functions, which limits its application in
practice. [45] proposes a method for producing certificates of
robustness for two-layer neural networks. Such certificates
are differentiable and can be jointly optimized with the
network parameters, providing an adaptive regularizer that
encourages robustness against attacks. However, they do
not discuss the inherent tradeoff between robustness and
model bias (i.e., degradation in accuracy on clean data that
results from making the classifier robust to attacks).

[44] relabels a sample based on the plurality label of its
K nearest neighbors (KNN) to enforce label homogeneity.
However, this defense will fail when the number of poi-
soned samples is sufficiently large such that some of the
neighbors of an attack sample are also attack samples. This
defense also relies on the availability of a clean validation set
to tune the hyper-parameter K . This choice highly impacts
the detector’s performance, as will be seen (cf . Sec. 5.2
and 5.3). [6] introduces an attack-agnostic defense against
DP attacks, employing a Generative Adversarial Network
(GAN) for synthetic clean data generation based on the
clean dataset possessed by the defender, on which a mimic
model is trained. Samples with different predictions for the
mimic model and the target model are deemed poisoned.
Thus, [6] requires sufficient clean data to accurately train
the GAN – but it is possible that such data could instead be
used to train a clean classifier from scratch.

[15], [25] posited a unified view of effects of DP on
learned classifier parameters: (1) the l2 norm of the gradient
from a poisoned sample is larger than that of a clean
sample, on average; (2) there is an orientation difference
between poisoned and clean sample gradients. [15] detects
such effects by singular value decomposition (SVD) applied
to the matrix of the sample-wise gradients of the training
loss function with respect to the model parameters. They
define an outlier score for each sample as the projection
of its gradient onto the top right singular vector. At each
detection step, the top ϵ

β fraction of samples with highest
scores are removed, where β is the total number of detection
steps and ϵ is the fraction of samples ultimately removed
after β steps. The performance of the detector sensitively
depends on the choice of the hyperparameters β and ϵ. Also,
it is only applicable to linear classifiers. Furthermore, [15]
is computationally expensive as it requires performing an
SVD for each class, at each detection step, and retraining
the classifier after each detection step.

[25] mitigates DP by gradient shaping (GS), i.e., con-
straining the magnitude and orientation of poisoned gradi-
ents to make them close to clean gradients. For example,
one can adopt, e.g., a differentially-private stochastic gra-
dient descent (DP-SGD) optimizer in training. It modifies
gradients by clipping and adding noise, both controlled by
hyperparameters. [25] is computationally cheap – it does
not require extra computation pre-training/post-training.
However, their method only reduces the effect of poisoning,
rather than eliminating the poisoned samples. Efficacy of
their defense is dramatically degraded as more and more
attack samples are injected, as will be seen from our results.

[30], [52] mitigate DP attacks by aggregating multi-
ple base classifiers trained on separate data subsets. The
premise is that each data subset will have fewer poisoned
samples, resulting in less classifier degradation. [30] par-
titions the training set into disjoint subsets using a hash
function. To further improve performance, each base clas-
sifier is first trained on the whole training set by semi-
supervised learning, focusing on predicting image rotation
angles [20], then is fine-tuned on its dedicated partition
through supervised learning.

[33] applied a BIC-based defense against DP attacks
for binary classification tasks. The fundamental difference
between [33] and our work pertains to untainted data avail-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

ability. They assume the attacker only poisons one of the
two classes, with this class known to the defender. Thus,
the defender can always take the clean class as reference to
identify poisoned samples in the corrupted class. However,
in practice, the attacker is able to poison more than one
class, and the defender does not know which class(es) are
poisoned. Under this most realistic scenario, [33] may fail
even if only one class is poisoned, as the defender might
sanitize the clean class based on the poisoned one (cf .
Sec. 5.2). By contrast, our defense strategy applies to multi-class
classifiers and addresses the practical and challenging DP attack
scenario where the poisoned samples and the poisoned classes are
a priori unknown. Also, we do not make any assumption of clean
data availability.

[6], [15], [25], [30], [44], [52] are supervised detection
methods, with their performances highly impacted by the
choices of hyper-parameters. By contrast, our method is un-
supervised. At each optimization step, it separately assesses
the hypothesis that each individual mixture component, in
each class, is poisoned. Only the component whose trial-
sanitization yields the lowest BIC cost is actually sanitized.
This process is repeated until the total BIC cost, defined over
all classes, converges.

3 THREAT MODEL

We consider W -class (W ≥ 2) tasks, where the classifier,
denoted f : Rd → {1, . . . ,W}, is trained on DTrain and
then tested on DTest, both with (assumed) i.i.d. samples.
Each feature xl, l = 1, . . . , d, may be either discrete or
continuous-valued.

We assume the attacker: 1) has sufficient knowledge of
the classification domain to generate or acquire samples
that are legitimate instances of the different classes, in
order to launch label flipping poisoning attacks [3], [54];
2) covertly inserts poisoned samples into the training set
(DTrain = DClean ∪ DAttack); 3) May simultaneously poison
any subset of the classes, possibly with different numbers
of poisoned samples for each class; 4) is unaware of any
deployed defense. The goal of the attacker is to degrade
the classifier’s (test set) generalization accuracy as much as
possible.

The defender: 1) only has the training set DTrain manipu-
lated by the attacker, not any additional samples known to
be clean (attack-free); 2) does not know whether an attack is
present, and if so, does not know the subset of attacking
samples (DAttack), nor which class(es) are corrupted. The
defender aims to: 1) identify and remove as many poi-
soned samples and as few clean samples as possible, before
classifier training/retraining, and in so doing: 2) achieve
classification accuracy close to that of a classifier trained on
clean (unpoisoned) data.

4 BIC MIXTURE-BASED SANITIZATION STRATEGY

First, we hypothesize that poisoned samples labeled
to a particular class form different sub-populations from
normal samples with the same label. Thus, we apply mixture
modeling to accurately represent the dataset and to concen-
trate poisoned samples within several distinct components.
Second, the likelihood of the whole dataset should increase
if poisoned samples are re-assigned to their true classes,

and the complexity of the mixture model should decrease
if a component formed by poisoned samples is removed
or revised. We thus aim to identify poisoned samples, and to
remove or revise poisoned components, such that the overall
data likelihood increases and the model complexity decreases, i.e.
consistent with minimizing the BIC [47] objective function.

To accurately represent the possibly poisoned dataset,
we first apply mixture modeling to each class. Mixture
modeling is a sound statistical approach for well-fitting
potentially multi-modal data [16], [36] and also gives the
potential for concentrating the poisoned samples into just a
few components, which assists in accurately identifying and
removing them. In practice, poisoned components may own
both poisoned and untainted samples, with the poisoning
ratio for each component unknown.

After learning the initial class-specific mixtures, we pro-
pose to identify poisoned samples in the training set as
those with greater likelihood under a different class than the
class to which they are labeled. We effectively re-assign such
samples to the class (and mixture component) under which
they have the greatest likelihood. Then the parameters of the
component that has samples re-assigned to another class are
updated based on its remaining samples.

Now, suppose the vast majority of a mixture compo-
nent’s samples are re-assigned in this way to another class.
In this case, there may be insufficient remaining samples
to reliably (or even in a well-posed fashion2) estimate the
component’s parameters. Thus, rather than retaining this
component, it may be better to remove it, with its remaining
samples reassigned. Since these samples are not deemed
poisoned, they are re-assigned to other components within
the same class, those under which they have the great-
est likelihood. To decide between revising and (wholesale)
removing a mixture component from a class’s model, we
apply BIC, which expresses an inherent, fundamental trade-
off between data likelihood fit and model complexity. A
poisoned component is either removed or revised, based on
whichever results in a lower BIC cost.

In short: a component is identified as poisoned if removing
or revising it and re-assigning its samples reduces the BIC cost;
moreover, samples which are redistributed to other class(es) are
deemed poisoned. Thus, our anomaly detection method is
unsupervised and consistent with solving a BIC minimization
problem3. In the sequel, we develop an algorithm for miti-
gating data poisoning via (locally optimal) minimization of
the BIC objective.

4.1 Bayesian Information Criterion
The BIC objective function for a given data set D is:

BIC = |θ|k − L(D; θ), (1)

where θ is the set of free parameters specifying a density
function model for the data, |θ| denotes its size, k is the cost
(penalty) for describing an individual model parameter, and
L(D; θ) is the log-likelihood of the data set D, based on the
density function model. In [47], under suitable assumptions,

2. For example, for a multivariate Gaussian component, with a full
covariance matrix of size d×d, one needs at least d samples to estimate
a (full-rank) covariance matrix.

3. Apart from poisoned samples, our method might also remove any
outliers, if it is BIC-efficacious to do so.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

BIC is shown to be a consistent estimator of model order.
In [29], within an approximate Bayesian setting, the BIC
penalty is derived, and found to be k = 0.5 ∗ log(|D|). This
model penalty will be used in the following.

The form of the BIC objective seen above is equivalent
to the minimum description length (MDL) [46], and is
amenable to interpretation as a two-part codelength: i) the
first term, which we will denote by Ω in the sequel, is the
number of bits needed to describe the model parameters; ii)
the second, negative log-likelihood term is the number of
bits to describe the data set, given the model.

In this work, we model the training data labeled to each
class by a class-specific mixture of density functions (or
probability mass functions in the case of discrete data), i.e.,
for an individual sample x, labeled to class c, its density
(likelihood) is:

P [x; θc] =
Mc∑
j=1

αc
jP [x; Λc

j], (2)

where αc
j is the probability mass of mixture component j

for class c (i.e.,
∑Mc

j=1 α
c
j = 1, αc

j ≥ 0 ∀j), P [·; Λc
j] is the jth

component density under class c, Λc
j is the set of parameters

specifying the component density, and Mc is the number of
mixture components for class c. Note that θc = {Λc

j}
⋃
{αc

j}
and θ =

⋃
c θc.

In Eq. 2, a data sample from class c is associated prob-
abilistically with all mixture components from the class’s
mixture density. Alternatively, in this work, we consider the
complete data BIC objective function, based on the complete
data log-likelihood function [12], wherein each data sample
is hard (fully) assigned to the mixture component under
which it has the greatest log-likelihood. That is, the complete
data log-likelihood for the data from class c is4

Lc
j =

∑
x∈X c

j

logP [x; Λc
j],

where x ∈ X c
j if and only if, for x labeled to class c,

P [x; Λc
j] ≥ P [x; Λc

j′] ∀j′ ̸= j.
Likewise the complete data BIC objective is:

BICcmplt = |θ|k −
W∑
c=1

Mc∑
j=1

Lc
j . (3)

4.2 BIC-based Defense
Let T = |DTrain| be the total number of training samples.

Let (xi, yi) ∈ Rd × {1, . . . ,W} represent the feature vector
(in the continuous-valued case) and label of training sample
i. Denote Ω and L as the model complexity and data log-
likelihood, respectively.

The model parameters θc of the mixture for class c are
estimated via the Expectation-Maximization (EM) algorithm
[12], applied to the subset of Dtrain labeled as class c. The
chosen model order Mc is the one that yields the least BIC
cost (1) over the set {1, . . . ,M c

max} [47], with M c
max an upper

bound on the number of components in class c’s mixture5.

4. Here we assume the component priors are uniform and hence they
are absent from the complete data log likelihood. In practice, these
terms do not affect detection performance significantly.

5. Mc
max is in fact not really a hyperparameter, as one can observe

the changes of BIC to adjust the range of model orders. For example,
if Mc

max yields the least BIC, one can increase Mc
max and repeat model

selection until Mc ̸= Mc
max.

Finally, we let S = {(c, j)|c = 1, . . . ,W, j = 1, . . . ,Mc} be
the set of components across all classes.

To reiterate, we identify poisoned components and sam-
ples by minimizing the complete data BIC cost (3). This BIC
minimization involves sample re-distribution, component
removal/revision, and parameter updates. To reflect these
model changes, we introduce several types of “indicator”
variables:

• The class ti and component under this class
ji that best-explain sample xi are (ti, ji) =
argmaxt={1,...,W}, j={1,...,Mt} P [xi; Λ

t
j],

• rcj =

{
1 component j in class c is poisoned
0 else

• qcj =

{
1 component j in class c needs to be revised
0 component j in class c needs to be removed

Note that qcj is configured only when rcj = 1.
The complete data BIC cost to be minimized can then be

expressed as:

BICcmplt(θ) =
W∑
c=1

Mc∑
j=1

((1− rcj(1− qcj))k|Λc
j |+ 1 + δ(rcj , 1))

−
W∑
c=1

Mc∑
j=1

((1− rcj)L
c
j(Λ

c
j) + rcj

∑
xi∈X c

j

logP [xi; Λ
ti
ji
]). (4)

In (4), the model parameters are θ = {{Λc
j}, {rcj}, {qcj}},

where the structural parameters rcj and qcj each require
one bit to specify (hence the ‘1’ and δ(rcj , 1) contributions
to the model complexity term). By contrast, ti and ji are
hidden data assignments (as part of the complete data log-
likelihood, and complete data BIC), not model parameters.

To minimize (4) in a locally optimal fashion, our ap-
proach cycles over the mixture components, one at a time,
effecting changes to the mixture models that reduce this ob-
jective. The new BIC cost, in light of changes to component
j from class c, can be expressed as the “old” BIC cost plus
the (negative) change resulting from sample re-assignments
or component removal/revision, denoted ∆BICc

j .
Each feasible joint configuration of the variables for

component j in class c corresponds to one of three cases:
1) rcj = 0: The component is formed by clean samples,

and there is no need to re-distribute its samples or modify
the component (i.e., ∆Ωc

j,1 = 0, ∆Lc
j,1 = 0). The change in

BIC in this case is thus

∆BICc
j = ∆Ωc

j,1 +∆Lc
j,1 = 0.

2) rcj = 1, qcj = 0: Component j is poisoned, and we are
choosing to remove it from the mixture, changing the model
complexity term by

∆Ωc
j,2 = −|Λc

j |
1

2
log T,

where |Λc
j | is the number of parameters in component j

from class c. The component’s samples are re-distributed
consistent with maximizing the log-likelihood: each sample
xi ∈ X c

j is re-assigned to component ji of class ti, where

(ti, ji) = argmax
(t,j′)∈S\{(c,j)}

logP [xi; Λ
t
j′].

Let
Q = {(ti, ji)|∀i, xi ∈ X c

j }

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

be the set of components which receive the re-assigned
samples. For each component (w, j′) ∈ Q, we re-estimate
its parameters on X̂w

j′ by maximum likelihood estimation
(MLE):

Λw,new
j′ = argmax

Λ

∑
xi∈X̂w

j′

logP [xi; Λ],

where

X̂w
j′ = Xw

j′ ∪ {xi ∈ X c
j |ti = w, ji = j′}.

This optimization has a closed form, globally optimal solu-
tion for the component density model forms considered in
this paper. The total data log-likelihood changes by

∆Lc
j,2 = −

∑
(w,j′)∈Q

∑
xi∈X̂w

j′

logP [xi; Λ
w,new
j′]

+
∑

(w,j′)∈Q

∑
xi∈Xw

j′

logP [xi; Λ
w
j′] +

∑
xi∈X c

j

logP [xi; Λ
c
j].

The change in BIC in this case is

∆BICc
j = ∆Ωc

j,2 +∆Lc
j,2.

3) rcj = 1, qcj = 1: Similar to case (2) but instead of
removing it, we re-estimate the parameters of component j
by its surviving samples (i.e., samples with ti = c). Revising
a component does not change the model complexity cost,
since the code length is untouched (i.e., ∆Ωc

j,3 = 0). The
parameters Λc

j are re-estimated by MLE on the surviving
samples:

Λc,new
j = argmax

Λ

∑
xi∈X̂ c

j

logP [xi; Λ],

where
X̂ c

j = {xi ∈ X c
j |ti = c}.

Samples that are best represented by class w ̸= c (i.e., ti = w,
w ̸= c) are re-distributed to their fittest components in class
w, but the remaining samples (with ti = c) are explained by
the updated component j. Let

Q′ = {(w, j′) ∈ Q|w ̸= c} ∪ {(c, j)}

be the set of components to be updated. The total data log-
likelihood changes by

∆Lc
j,3 =−

∑
(w,j′)∈Q′

∑
xi∈X̂w

j′

logP [xi; Λ
w,new
j′]

+
∑

(w,j′)∈Q′

∑
xi∈Xw

j′

logP [xi; Λ
w
j′],

where X̂w
j′ and Λw,new

j′ ∀(w, j′) ∈ Q′ \ {(c, j)} are defined in
the same way as in case 2. The BIC change in this case is

∆BICc
j = ∆Lc

j,3.

To minimize the complete data BIC objective, for each
component in class c ∈ {1, . . . ,W}, we should choose the
configuration of the parameters that reduces BIC the most.
However, the optimal configuration for any component j
depends on the configurations for other components. It is
thus intractable to define an algorithm guaranteed to find
a globally optimal configuration over all components (e.g.,

by exhaustively evaluating over the huge combinatorial
space of component configurations). Instead, at each opti-
mization step, we separately trial-update each component’s
configuration, and then only permanently update for the
component that yields the greatest reduction in BIC. This is
repeated until there are no further changes. This optimiza-
tion approach is non-increasing in the BIC objective and
results in a locally optimal solution.

The null hypothesis of our detection inference is that the
training set is not poisoned (and is generated according to
the existing mixture model). If there is data poisoning, the
training set is hypothesized to be generated by an alterna-
tive model (with some components removed and/or mod-
ified). Thus, we perform the following hypothesis testing:
after BIC minimization, if rcj = 0 holds for all components
in all classes, and ti = yi holds for all samples, then no
components and samples are inferred to be poisoned, and
we accept the null hypothesis. Otherwise, we reject the null
hypothesis, and the training set is deemed poisoned. The
samples that were re-assigned to other classes via the BIC
minimization are deemed poisoned, and are removed from
the training set.

4.3 Implementation
Consistent with the above description, we apply an

iterative, locally optimal approach to minimize the total BIC
cost and optimize its parameters, as shown in Algorithm 1.
As we discussed before, at each algorithm step, we first
evaluate the reduction in the total BIC cost ∆BICc

j caused
by trial removal/revision of each component j in each class
c. Then, we sanitize the component j∗ in class c∗ which
decreases the total BIC cost the most, i.e.,

(c∗, j∗) = argmin
c∈{1,...,W},j=1,...,Mc

∆BICc
j ,

where

∆BICc
j = min

m=1,2,3
{∆Ωc

j,m +∆Lc
j,m}.

This is repeated until no trial component updates further
reduce the BIC cost. Finally, all samples with ti ̸= yi are
removed from the training set, and we have the sanitized
training set

D̂Train = {xi ∈ DTrain|ti = yi}.

Note that: 1) the same component may be re-optimized
multiple times during the course of this algorithm; 2) But
removal of a component is permanent, i.e. once removed, a
component cannot be reinstated.

5 EXPERIMENTS

5.1 Experiment Setup
Dataset and mixture model: For binary classification,

we use the TREC 2005 spam corpus (TREC05) [10]. TREC05
contains 39,999 real ham and 52,790 spam emails which
are labeled based on the sender/receiver relationship. We
apply pre-processing techniques such as normalization, stop
word removal, stemming, and low-frequency word filtering
to the corpus. For multi-class (W > 2) classification, we
use the 20-Newsgroups dataset (20NG) [28], MNIST [14],
CIFAR10 [26], and STL10 [9]. 20NG collects news docu-
ments from 20 topics, with each topic containing around

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 1: BIC-Based DP Attack Defense

Input : DTrain = {(xi, yi)}Ni=1, {Λc
j}j=1,...,Mc, c∈{1,...,W}

Output: D̂Train
rcj = 0, qcj = 0, ∀c, j ;
ti = yi, ∀i;
∆BICc

j = 0, ∀j, c;
do

for c ∈ {1, . . . ,W} do
for each component j in class c do

compute BIC reduction from j
∆BICc

j = min{∆Ωc
j,m +∆Lc

j,m}3m=1;
configure {ti|∀xi ∈ X c

j }, rcj , qcj consistent
with ∆BICc

j ;
(c∗, j∗) = argminc∈{1,...,W},j=1,...,Mc ∆BICc

j ;
if rc

∗
j∗ = 1 then
For xi ∈ X c∗

j∗ , if ti ̸= c∗, re-distribute xi to
component m = argmax

m′
logP [xi; Λ

ti
m′] in class

ti and then update component m’s parameters
via MLE;

if qc
∗

j∗ = 0 then
remove component j∗ from {Λc∗

j }j=1,...,Mc∗ ;
re-distribute each xi ∈ X c∗

j∗ to component
m = argmax

m′
P [xi; Λ

c∗

m′] and update

component m’s parameters;
else

update component j∗’s parameters on X c∗
j∗ ;

while
∑

c,j ∆BICc
j < 0;

D̂Train = {xi ∈ DTrain|ti = yi};

1000 samples. MNIST is a dataset of 28x28 gray-scale im-
ages. It contains 6000 images per class. CIFAR10 consists of
32x32 color images, with 6000 images per class. STL10 is
composed of 96x96 color images, with 1300 labeled images
per class6. The initial experiments on each dataset involved
5 classes. For 20NG, we chose classes “rec.sport.baseball”,
“soc.religion.christian”, “comp.graphics”, “rec.autos”, and
“misc.forsale”. For MNIST, CIFAR10, and STL10, we chose
the first 5 classes.

We split each dataset into disjoint subsets as follows: (1)
For TREC05, we randomly select 9000 ham emails and 9000
spam emails7 for training, and randomly select 3000 ham
and 3000 spam emails to form the test set. The remaining
samples are used for poisoning. (2) For 20NG, for each
class, we randomly choose 600 samples for training, 220 for
testing, and 160 for poisoning. (3) For MNIST, we randomly
select 2000 images per class for training, 1000 per class for
testing, and 800 per class for poisoning. (4) For CIFAR10,
for each class, 4000 images are used for training, 1000 for
testing, and 800 for poisoning. (5) For STL10, for each class,
500 images are used for training, 700 for testing and 100 for
poisoning.

For each dataset, we train a mixture model for each of its
classes. We apply Parsimonious Mixture Modeling (PMM)

6. The STL10 dataset is an image recognition dataset with 100000
unlabeled images for developing unsupervised feature learning, deep
learning, self-taught learning algorithms. Here we only use the labeled
set.

7. There are 8651 ham emails and 8835 spam emails remaining in the
training set after pre-processing. Some emails are removed since there
are no tokens left after e.g., stop word removal and low-frequency word
filtering.

[21] on TREC05 and 20NG. PMMs allow parameter shar-
ing across multiple components, which greatly reduces the
number of model parameters compared with standard (un-
structured) mixtures, and which allows BIC to choose good
model orders in high feature dimensions, rather than grossly
underestimating the model order [21]. Note that for PMMs,
due to parameter sharing, the number of parameters |Λc

j |,
specifying a component density function, is not necessarily
the same, across all components, from all classes. PMMs are
learned through the generalized expectation-maximization
(GEM) framework [21]. After pre-processing, the dictionary
of TREC05 and 20NG contains around 30000 and 10000
unique words, respectively. For both datasets, the training
and test samples are represented using a bag-of-words. Each
PMM component is a multinomial joint probability mass
function. Fig. 1 shows that, for class “soc.religion.christian”
of the clean 20-Newsgroups dataset, PMM chooses a rea-
sonable model order (14) that minimizes the training set
BIC cost and also has good generalization (i.e., test set log-
likelihood). Initially we chose M c

max = 25, ∀c. If the chosen
model order Mc = M c

max, then M c
max is increased and the

model is retrained.
We apply Gaussian mixture models (GMM) on MNIST,

CIFAR10, and STL10. For MNIST, we train GMMs on the im-
age features (flattened as 784-dimension vectors), while for
CIFAR10 and STL10 we train GMMs on the 512-dimensional
penultimate layer features of the victim NN-based classifier,
as the raw images are not very suitable for clustering. Before
GMM training, we normalize the feature values to [0, 1] and
center the feature vectors. To reduce model complexity, we
used a diagonal covariance matrix for each Gaussian com-
ponent. The GMMs are learned through the Expectation-
Maximization (EM) framework [12].

DP attack and target classifiers: We primarily consid-
ered label-flipping attacks, randomly mislabeling a sample
from class c to a class w ̸= c. The attack strength – the
number of poisoned samples – may not be the same for each
class. The poisoned samples are randomly selected (from the
sample pool left over from the training and test sets).

We launched 12 poisoning attacks on TREC05. For half
of the attacks, we only poisoned one class (e.g., spam), with
attack strength from 1000 to 6000 samples. For the other half
of the attacks, we simultaneously poisoned the ham and
spam training sets with various attack strengths (cf . Tab. 1).

For the multi-class tasks, we launched 5 DP attacks on all
datasets. In attack i = 1, . . . , 5, we used samples of the first
i classes for poisoning. Each poisoned sample from a given
class c is randomly mislabeled to one of the other classes.

We chose linear SVM [11], LR [39], and bi-directional
one-layer long short-term memory (LSTM) [24] recurrent
neural networks with 128 hidden units as the target clas-
sifiers for TREC05 and 20NG, since they are effective in
the classification of text data. For image datasets, we chose
ResNets [23] as the target classifiers8. For MNIST, we also
consider linear SVM and LR.

Evaluation criteria: The performance criteria are: 1) im-
provement in test classification accuracy (ACC) after data
sanitization; 2) true positive rate (TPR) — the fraction of

8. Since the number of labeled training samples of STL10 is not
sufficient for training a complicated NN from scratch, we fine-tuned
a pre-trained ResNet-34 on STL10.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

5 10 15
model order

567500

568000

568500

569000

569500

570000

570500

BI
C BIC

testset log-likelihood

227000

226000

225000

224000

223000

222000

221000

220000

te
st

se
t l

og
-li

ke
lih

oo
d

Fig. 1: Training set BIC cost and test set log-likelihood versus
the model order of the PMM on class “soc.religion.christian”
of clean 20NG.

poisoned samples that are detected; and 3) false positive
rate (FPR) – the fraction of non-poisoned samples falsely
detected.

Hyperparameter setting: We apply the BIC-based de-
fense with clean data samples (BIC-C-D) [33], the KNN-
based defense (KNN-D) [44], the GS-based defense (GS-
D), and the SVD-based defense (SVD-D) [15] on the same
poisoned training sets. As [33] was only proposed for binary
classification (and assumes the poisoned class is known), we
do not apply this method on the multi-class classification
task. We fail to apply the SVD-D on TREC05, since it is
too expensive to perform SVD on the matrix of gradients,
whose size is around (20000 × 60000). We also do not
apply it on the LSTM classifier, since it is only applicable
to linear classifiers. For ResNet models, we apply SVD-D
on the (linear) output layer. We also apply DPA [30] with
semi-supervised learning and FA [52] on the image datasets
and the ResNet architecture, as the code provided by [30]
was designed specifically for image datasets. We set the
hyperparameters of these detection methods as follows: 1)
For KNN-D, we set the number of neighbors at K = 10,
which is suggested by [44]. 2) For GS-D, we applied a DP-
SGD optimizer with clip-norm of 2.0 and noise multiplier of
0.1 for training, which were suggested in [25]. 3) For SVD-
D, we set the number of detection steps at β = 2, which is
the same as in [15]. To show the best performance for that
method, we set ϵ to the real poisoning ratio if the training
set is poisoned, and set it to 0.01 if there is no poisoning.
4) For DPA and FA, we set the number of partitions as
L = 5 to limit the computational cost. Since the code of FA
is not available, we simply fine-tune the lth base classifier
(l = 1, . . . , L) on partition l and (l + 1) mod L.

5.2 Experimental Results on Binary Classification
Tab. 1 shows the performance of victim classifiers as

a function of attack strength on poisoned and sanitized
TREC05 datasets. We first trained the target classifiers on
the clean dataset (Attack (0,0) in Tab. 1), yielding clean
ACC (baselines) for SVM, LR, and LSTM of 0.9522, 0.9616,
and 0.9632, respectively. As the total number of poisoned
samples is increased to 6000, the classification accuracies of
SVM/LR drop below 0.75 and LSTM drops to 0.8. Thus,
embedding real ham into the spam set and real spam into
the ham set is indeed a significant poisoning attack on
SVM/LR/LSTMs.

Then, we apply BIC-D, KNN-D, GS-D, and BIC-C-D
on the corrupted training sets and retrain the victim clas-
sifiers on the sanitized datasets. Since BIC-C-D [33] un-
realistically assumes the defender knows which class is

clean, we alternately apply it on ham and spam until the
total BIC cost converges. The sanitization is always initi-
ated from class ham. As expected, the ACC with BIC-C-
D drops rapidly when the poisoned samples exceed 4000.
The ACC with KNN-D and GS-D also decline gradually as
the attack strength increases, while BIC-D performs well
and stably. In all cases, our defense surpasses the other
three defenses in classification accuracy (marked in bold).
When the attack is strengthened to 5000 mislabeled ham
emails, KNN-D exhibits little improvement in ACC, and
GS-D performs even worse than the poisoned classifiers.
Our defense significantly improves ACC even under strong
attacks, restoring it close to the clean baselines. For LSTM,
GS-D performs even worse than the poisoned classifiers
in all cases, which may be attributable to hyperparameter
settings (We followed [25], which set hyperparameters for
LR, not LSTM). Note that for the embedded data poisoning
scenario considered here, there is no clean validation set
available for hyperparameter tuning.

Tab. 2 shows the TPRs and FPRs of the detection meth-
ods (GS-D is not included since it does not identify the
poisoned samples). Compared with KNN-D and BIC-C-D,
our defense has relatively low FPRs for all cases. Also, our
defense gives higher TPRs than KNN-D when only the spam
set is poisoned and comparable TPRs when both of the
classes are poisoned. When the poisoned samples exceed
4000, BIC-C-D fails to detect poisoned samples and falsely
removes a large number of clean samples.

When there is no attack, our defense falsely detects 789
clean samples as poisoned, but these samples have similar
likelihoods under both classes9. Also, for an SVM trained
on the clean training set excluding these samples, the ACC
on these removed samples is only 0.5855 – these samples are
close to the decision boundary and fit both classes. Given the
similar likelihoods, it is BIC-efficacious to remove/revise the
components formed by these samples. Besides, removing
these ambiguous samples in fact slightly increases the ACC.

Fig. 2a and 2b shows how the total BIC cost, SVM test
accuracy, and the number of detected poisoned samples
change with the number of components removed/revised
under the attack with 3000 poisoned samples for TREC0510.
As emphasized in Sec. 4, our method guarantees strict de-
scent in the BIC objective. But we cannot guarantee that the
test accuracy or the number of detected poisoned samples
are strictly non-decreasing. Samples that were previously
deemed poisoned might be restored clean at subsequent
detection steps and vice versa, resulting in slight fluctuation
in the curves of SVM ACC and detected poisoned samples.
Overall, the strong trend of the two curves is an increase
with increasing detection steps – the two curves increase
sharply initially and converge in the final stages, as the BIC
cost is further decreased.

We show the number of components, revised compo-
nents and removed components for both ham and spam
under all attack cases in Tab. 3. In general, the number of
removed and revised components increases as the attack is
strengthened. But for most cases, our method prefers revis-

9. The average log likelihoods under ham and spam are −879.77 and
−852.88, respectively.

10. In practice, we only remove the detected poisoned samples and
retrain the classifier once the detection procedure terminates.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

Poisoned Ham,
Poisoned Spam 0, 0 0,

1000
0,
2000

0,
3000

0,
4000

0,
5000

0,
6000

1000,
1000

1000,
2000

2000,
1000

2000,
2000

2000,
4000

4000,
2000

SVM
Poisoned 0.9522 0.8867 0.8461 0.8215 0.7932 0.7731 0.7495 0.8339 0.7924 0.7833 0.7488 0.7142 0.7114
BIC-D 0.9684 0.9611 0.9530 0.9425 0.9411 0.9394 0.9329 0.9454 0.9284 0.9429 0.9143 0.8998 0.8731
KNN-D 0.9001 0.8974 0.8828 0.8660 0.8358 0.7958 0.7751 0.9049 0.8917 0.8880 0.8793 0.8421 0.8367
GS-D 0.9645 0.9372 0.9225 0.9023 0.8131 0.7042 0.6314 0.9129 0.8807 0.8738 0.8568 0.8159 0.7711
BIC-C-D 0.9579 0.9434 0.9124 0.8519 0.6882 0.6039 0.5697 0.9217 0.9088 0.9061 0.8288 0.6385 0.7153

LR
Poisoned 0.9616 0.9175 0.8828 0.8443 0.8172 0.7803 0.7488 0.8843 0.8501 0.8481 0.8183 0.7591 0.7438
BIC-D 0.9699 0.9660 0.9559 0.9519 0.9461 0.9394 0.9368 0.9511 0.9402 0.9507 0.9315 0.9126 0.8799
KNN-D 0.9099 0.9073 0.8955 0.8831 0.8529 0.8069 0.7776 0.9169 0.9039 0.9044 0.8968 0.8646 0.8656
GS-D 0.9598 0.9384 0.9184 0.8606 0.8158 0.7099 0.6655 0.9258 0.9137 0.8948 0.8797 0.8091 0.7847
BIC-C-D 0.9622 0.9554 0.9247 0.8633 0.6909 0.6192 0.5801 0.9375 0.9222 0.9152 0.8358 0.6427 0.7158

LSTM
Poisoned 0.9632 0.9363 0.9111 0.8852 0.8668 0.8159 0.8028 0.8788 0.8681 0.8691 0.8521 0.7738 0.7985
BIC-D 0.9701 0.9682 0.9619 0.9588 0.9513 0.9465 0.9424 0.9584 0.9476 0.9551 0.9431 0.9223 0.8991
KNN-D 0.9313 0.9281 0.9183 0.8941 0.8744 0.8449 0.8009 0.9317 0.9131 0.9013 0.9125 0.8905 0.8821
GS-D 0.8339 0.8205 0.8123 0.7792 0.7347 0.7153 0.6824 0.8383 0.8176 0.8198 0.8208 0.7718 0.7949
BIC-C-D 0.9629 0.9607 0.9217 0.8712 0.6915 0.6149 0.5906 0.9359 0.9232 0.9277 0.8404 0.6514 0.7368

TABLE 1: Classification ACC of victim classifiers on poisoned and sanitized TREC05.

Poisoned Ham,
Poisoned Spam 0,0 0,

1000
0,
2000

0,
3000

0,
4000

0,
5000

0,
6000

1000,
1000

1000,
2000

2000,
1000

2000,
2000

2000,
4000

4000,
2000

True Positive Rates (TPRs)
BIC-D - 0.8898 0.9044 0.9036 0.8689 0.9014 0.8865 0.8633 0.8678 0.8874 0.8351 0.8113 0.8142
KNN-D - 0.8393 0.8154 0.7856 0.7342 0.6478 0.5761 0.8996 0.8518 0.9082 0.8842 0.8362 0.8261
BIC-C-D - 0.8846 0.8340 0.7303 0.3644 0.1951 0.1122 0.8628 0.8420 0.8284 0.7446 0.2102 0.4390

False Positive Rates (FPRs)
BIC-D 0.0177 0.0249 0.0841 0.0877 0.0553 0.0885 0.0652 0.0499 0.0629 0.0586 0.0737 0.0809 0.1131
KNN-D 0.0745 0.0826 0.0936 0.1095 0.1377 0.1798 0.2122 0.0888 0.1057 0.1012 0.1099 0.1339 0.1452
BIC-C-D 0.0505 0.0724 0.0775 0.0881 0.3209 0.3621 0.3868 0.0598 0.0681 0.0630 0.2128 0.2958 0.2698

TABLE 2: TPRs and FPRs of three defenses on TREC05.

Poisoned Ham,
Poisoned Spam 0,0 0,

1000
0,
2000

0,
3000

0,
4000

0,
5000

0,
6000

1000,
1000

1000,
2000

2000,
1000

2000,
2000

2000,
4000

4000,
2000

Components (21,18) (29,16) (22,18) (25,17) (19,20) (24,20) (24,31) (49,27) (25,15) (37,29) (48,28) (40,29) (36,28)
Revised Components (1,5) (0,6) (6,11) (5,10) (1,16) (2,9) (7,11) (19,18) (11,7) (17,12) (9,7) (14,11) (14,13)
Removed Components (0,1) (5,3) (2,6) (1,2) (2,4) (3,4) (4,11) (7,4) (4,2) (4,6) (12,5) (10,5) (8,11)

TABLE 3: The number of components, revised components, and removed components of each class of TREC05.

ing a poisoned component rather than removing it (most
components consist of both clean and poisoned samples,
and it is apparently most BIC-efficacious to revise them).

5.3 Experimental Results on Multi-class Classification
Table 4, 6, 8, and 10 show the test accuracy of victim

classifiers as a function of the number of attacked classes on
poisoned and sanitized 20NG, MNIST, CIFAR10, and STL10
datasets, respectively. We first trained the target classifiers
on the attack-free datasets to get baseline test accuracies (i.e.,
column 0 of poisoned classifiers). Then we trained the classi-
fiers on training sets poisoned by the 5 DP attacks described
in Sec. 5.1, with the resulting test accuracies in columns 1-5
of “Poisoned”, respectively. For 20NG and MNIST, as the
number of classes used for poisoning is increased to 5, the
classification accuracies of SVM and LR drop by over 30%
(absolute percentage drop). The test accuracy of the NN-
based classifier drops by nearly 30% on 20NG and 20% on
MNIST. The test accuracies of ResNets drop by over 10%
on CIFAR10 and nearly 10% on STL10. Thus, the attacks
designed in Sec. 5.1 are indeed effective poisoning attacks
against all target classifiers, on all datasets.

Then we applied our defense and KNN-D, GS-D, SVD-

D, DPA, and FA on the poisoned training sets. Generally, our
defense outperforms the other defenses in ACC (marked in
bold). For 20NG (cf ., Tab. 4), our defense performs the best
in all attacking cases. Although other methods improve the
ACC for most cases, they incur a 10%-25% drop in ACC
as the attack strength increases, compared with the clean
baseline. Our BIC-D performs well and stably – the ACC
drops by 5% at most.

For CIFAR10 (cf ., Tab. 8), our defense still beats the other
defenses in all attacking cases, excluding attack 0 (attack-
free), where SVD-D performs the best due to the proper
setting of ϵ. However, in practice, it will be difficult to find
an appropriate value for ϵ without a clean validation set.
The ResNet-18 with KNN-D and GS-D performs even worse
than the poisoned classifier in all attacking cases. SVD-D
only improves the ACC by 4% at most. DPA struggles under
weak attacks due to fine-tuning base classifiers on small
partitions which are individually inadequate for learning
an accurate DNN. However, it offers a slight improvement
in ACC (around 3%) under attack 4 and 5, due to the in-
herent robustness of ensemble models. FA improves the test
accuracy by around 2% in all attacking cases. By contrast,
our method only incurs a drop of 2% in ACC under the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
revised/removed components

1.37

1.38

1.39

1.40

1.41

1.42

1.43

BI
C

1e7 0 poisoned ham,3000 poisoned spam

BIC
SVM test accuracy
detected poisoned samples

0.86

0.88

0.90

0.92

0.94

SV
M

 te
st

 a
cc

ur
ac

y

0

500

1000

1500

2000

2500

3000

3500

4000

de

te
ct

ed
 p

oi
so

ne
d

sa
m

pl
es

(a)

0 5 10 15 20 25 30 35 40
revised/removed components

1.28

1.30

1.32

1.34

1.36

BI
C

1e72000 poisoned ham,1000 poisoned spam

BIC
SVM test accuracy
detected poisoned samples

0.82

0.84

0.86

0.88

0.90

0.92

0.94

SV
M

 te
st

 a
cc

ur
ac

y

0

500

1000

1500

2000

2500

3000

3500

de

te
ct

ed
 p

oi
so

ne
d

sa
m

pl
es

(b)

0 10 20 30 40
revised/removed components

1.730

1.735

1.740

1.745

1.750

1.755

BI
C

1e6 Attack 3

BIC
SVM test accuracy
detected poisoned samples

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

SV
M

 te
st

 a
cc

ur
ac

y

0

100

200

300

400

de

te
ct

ed
 p

oi
so

ne
d

sa
m

pl
es

(c)

0 10 20 30 40 50 60 70 80
revised/removed components

3.48

3.46

3.44

3.42

3.40

BI
C

1e7 Attack 3

BIC
SVM test accuracy
detected poisoned samples

0.65

0.70

0.75

0.80

0.85

0.90

0.95

SV
M

 te
st

 a
cc

ur
ac

y

0

500

1000

1500

2000

2500

de

te
ct

ed
 p

oi
so

ne
d

sa
m

pl
es

(d)

Fig. 2: BIC cost, SVM ACC, and the number of detected poisoned samples versus the number of visited components under
attacks: (a) TREC05 with 0 poisoned ham, 3000 poisoned spam; (b) TREC05 with 2000 poisoned ham, 1000 poisoned spam;
(c) attack 3 against 20NG; (d) attack 3 against MNIST.

strongest attack, compared with the clean baseline.
For STL10 (cf ., Tab. 10), the ResNet-34 with KNN-D

performs worse than the poisoned classifier in all attacking
cases. GS-D mitigates the negative effect of DP, but the ACC
still drops by 6% compared with the clean baseline. SVD-D
has little effect in improving ACC. On the other hand, the
ACCs with our method drop by 1.31% at most, compared
with the clean baseline. Similar to the results on CIFAR-
10, DPA and FA perform worse than the single poisoned
classifier.

For MNIST, our method outperforms GS-D, SVD-D,
DPA, and FA, while KNN-D with K = 10 gives slightly
better results than ours. K = 10 was suggested by [44] and
chosen based on a clean validation set. However, without
access to a trusted validation set under the embedded attack
scenario considered here, the choice of K becomes crucial, as
discussed in Sec. 2. For K = 3, the ACC with KNN-D drops
significantly under attack 5. On the attack-free training set,
SVD-D performs best on SVM and LR, and KNN-D is best
for ResNet-18, given well-chosen hyperparameters (but BIC-
D performs comparably). Unlike the results on CIFAR-10,
the ensemble classifiers of DPA and FA maintain an ACC
close to the clean baseline, but still lower than KNN-10-D
and ours under all attack cases.

Tab. 5, 7, 9, and 11 show the TPRs and FPRs of the
detection methods on 20NG, MNIST, CIFAR10, and STL10
datasets, respectively. Since the performance of SVD-D de-
pends on the classifier architecture and training loss func-
tion (it evaluates the gradients of same), we respectively
show its TPR/FPR on SVM, LR, and ResNet as SVD-D-S,
SVD-D-L, and SVD-D-R. We reiterate here that both KNN-
D and SVD-D evaluated here are supervised methods, i.e.
with appropriately chosen hyper-parameters. For 20NG, CI-
FAR10, and STL10, compared with the other two defenses,
our defense has relatively high TPRs and low FPRs for
all cases. Almost no clean samples are falsely reported by
our defense, while a large number of poisoned samples
are correctly identified. KNN-D falsely detects lots of clean
samples in all attack cases, even when there is no poisoning.
By contrast, SVD-D only detects a small amount of poisoned
samples, especially when the attack is weak. For MNIST,
SVD-D has lower TPRs and FPRs than ours on SVM and LR,
but does not perform well on ResNet. KNN-D with K = 10
has higher TPRs and lower FPRs than our method under
most attacking cases. Again, the performance of KNN-D
is affected by the choice of K , and K = 10 was chosen

based on the detector’s performance evaluated on a clean
validation set for MNIST. With K = 3, the detector is less
“aggressive” – it reports fewer detected poisoned images
and has much lower TPRs.

On CIFAR-10, we also applied a GAN-based anomaly
detector (GAN-AD) [56]. We report the ACC after sanitiza-
tion and TPR at FPR at 0.1, as GAN-AD needs a detection
threshold specified. As shown in Tab. 8 and 9, the im-
provement on test set ACC brought by GAN-AD is limited,
due to the relatively low TPR. [51] suggests to apply the
KNN based detectors on feature representations extracted
by self-contrastive (SC) learning [7]. We report the ACC,
TPR, and FPR of both KNN-D and BIC-D on the SC-learned
feature representations in Tab. 12 (denoted as KNNSC-
D and BICSC-D respectively). Recall that, for our main
experiments on image datasets, we apply both methods on
features extracted by the poisoned models, which yielded
lower FPRs under weak attacks. On the other hand, the
SC-based encoder improves TPRs and FPRs (under strong
attacks) for both methods, as it removes the impact of mis-
labeling on feature representations. Despite that, training an
additional encoder on the poisoned training set significantly
increases the time complexity.

Similar to the results in Sec. 5.2, it is BIC-efficacious
to re-distribute samples that are well-explained by more
than one class, resulting in removal of a few samples from
clean datasets. In Fig. 2c and 2d, we respectively show how
the total BIC cost, SVM ACC, and the number of detected
poisoned samples change with the number of components
removed/revised under attack 3 against 20NG and MNIST.
Again, our method strictly reduces the BIC objective, but
cannot guarantee strict increases in ACC and the num-
ber of detected poisoned samples. For 20NG, both metrics
are almost strictly non-decreasing, especially initially. For
MNIST, ACC fluctuates heavily at first and finally converges
at around 0.95, while detected poisoned samples steadily
increases.

We show the number of total components, revised and
removed components of each class under all attack cases
on all datasets in Table 13. For all datasets, the total num-
ber of removed and revised components is nearly strictly
increasing as the attack is strengthened. On CIFAR10 and
STL10, BIC-D is applied in the internal layer feature space
of ResNets, where the poisoned samples are well separated
from clean ones; thus it prefers removing rather than re-
vising poisoned components. By contrast, for 20NG, and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

Attack 0 1 2 3 4 5
SVM

Poisoned 0.9172 0.8681 0.7936 0.7036 0.6072 0.5281
BIC-D 0.9254 0.9127 0.9027 0.8845 0.8818 0.8736
KNN-D 0.9009 0.8891 0.8672 0.8236 0.7736 0.7391
GS-D 0.9127 0.8918 0.8691 0.8391 0.8073 0.7645
SVD-D 0.9181 0.8663 0.8272 0.7745 0.7254 0.6600

LR
Poisoned 0.9309 0.8781 0.8291 0.7536 0.6718 0.5909
BIC-D 0.9354 0.9218 0.9172 0.8954 0.8872 0.8809
KNN-D 0.8909 0.8791 0.8681 0.8309 0.7963 0.7700
GS-D 0.9181 0.8873 0.8855 0.8536 0.8373 0.7973
SVD-D 0.9309 0.9081 0.8690 0.8618 0.8463 0.8400

LSTM
Poisoned 0.8063 0.7427 0.7163 0.6736 0.6055 0.5336
BIC-D 0.8073 0.8064 0.8018 0.7800 0.7627 0.7481
KNN-D 0.7454 0.7409 0.7200 0.7136 0.7000 0.6664
GS-D 0.2636 0.2555 0.2400 0.2282 0.2545 0.2536

TABLE 4: Classification ACC of victim classifiers on poi-
soned and sanitized 20NG.

Attack 0 1 2 3 4 5
True Positive Rates (TPRs)

BIC-D - 0.8325 0.8203 0.7958 0.7843 0.7762
KNN-D - 0.7687 0.7412 0.7296 0.7281 0.7104
SVD-D-S - 0.2500 0.4156 0.4708 0.4828 0.4900
SVD-D-L - 0.5937 0.6218 0.7020 0.7562 0.7650

False Positive Rates (FPRs)
BIC-D 0.0084 0.0145 0.0135 0.0145 0.0168 0.0155
KNN-D 0.1993 0.2001 0.1991 0.1997 0.2017 0.2091
SVD-D-S 0.01 0.0405 0.0632 0.0858 0.1118 0.1378
SVD-D-L 0.01 0.0219 0.0408 0.0483 0.0527 0.0581

TABLE 5: TPRs and FPRs of three defenses on 20NG.

Attack 0 1 2 3 4 5
SVM

Poisoned 0.9621 0.8791 0.8717 0.8665 0.7773 0.5711
BIC-D 0.9536 0.9519 0.9551 0.9569 0.9537 0.9441
KNN-10-D 0.9560 0.9583 0.9564 0.9591 0.9618 0.9544
KNN-3-D 0.9616 0.9416 0.9367 0.9019 0.8772 0.8464
GS-D 0.9508 0.8846 0.8007 0.7867 0.7048 0.6213
SVD-D 0.9624 0.9537 0.9497 0.9415 0.9377 0.9239

LR
Poisoned 0.9606 0.8927 0.8521 0.8005 0.6592 0.6390
BIC-D 0.9628 0.9569 0.9508 0.9583 0.9552 0.9455
KNN-10-D 0.9636 0.9584 0.9560 0.9611 0.9565 0.9534
KNN-3-D 0.9604 0.9450 0.9359 0.8927 0.8814 0.8484
GS-D 0.9545 0.9241 0.8004 0.7186 0.6079 0.5754
SVD-D 0.9659 0.9536 0.9452 0.9377 0.9353 0.9392

ResNet-18
Poisoned 0.9976 0.9548 0.8986 0.8735 0.8597 0.8266
BIC-D 0.9986 0.9918 0.9951 0.9908 0.9911 0.9869
KNN-10-D 0.9988 0.9988 0.9976 0.9964 0.9961 0.9953
KNN-3-D 0.9974 0.9935 0.9706 0.9688 0.9622 0.9568
GS-D 0.9968 0.9787 0.9311 0.8846 0.8246 0.8001
SVD-D 0.9986 0.9920 0.9644 0.9322 0.9073 0.8433
DPA 0.9904 0.9892 0.9883 0.9846 0.9814 0.9784
FA 0.9933 0.9909 0.9875 0.9861 0.9789 0.9729

TABLE 6: Classification ACC of victim classifiers on poi-
soned and sanitized MNIST.

as observed for TREC05 in Sec. 5.2, our detector prefers
revising rather than removing poisoned components.

5.4 Statistical Test
We utilized a paired t-test [13] to assess the performance

of our method relative to others:

1) We performed 5-fold cross-validation for BIC-D, KNN-
D, SVD-D, and GS-D on 20NG and for BIC-D, DPA,
and FA on CIFAR-10, recording the test fold accuracy

Attack 0 1 2 3 4 5
True Positive Rates (TPRs)

BIC-D - 0.9562 0.9556 0.9429 0.9568 0.9315
KNN-10-D - 0.9950 0.9918 0.9867 0.9834 0.9827
KNN-3-D - 0.8662 0.8106 0.7833 0.7543 0.7397
SVD-D-S - 0.8600 0.8418 0.8591 0.8821 0.8832
SVD-D-L - 0.8812 0.8668 0.8875 0.9009 0.9082
SVD-D-R - 0.7725 0.6550 0.5287 0.4581 0.4352

False Positive Rates (FPRs)
BIC-D 0.0465 0.0723 0.0503 0.0406 0.0561 0.0531
KNN-10-D 0.0182 0.0175 0.0166 0.0169 0.0186 0.0194
KNN-3-D 0.0088 0.0109 0.0191 0.0394 0.0533 0.0695
SVD-D-S 0.0100 0.0112 0.0253 0.0338 0.0377 0.0467
SVD-D-L 0.0100 0.0095 0.0213 0.0270 0.0317 0.0367
SVD-D-R 0.0100 0.0182 0.0552 0.1131 0.1734 0.2259

TABLE 7: TPRs and FPRs of three defenses on MNIST.

Attack 0 1 2 3 4 5
Poisoned 0.8634 0.8502 0.8302 0.7974 0.7634 0.7430
BIC-D 0.8638 0.8616 0.8528 0.8452 0.8446 0.8416
KNN-D 0.7150 0.7154 0.6688 0.6758 0.6602 0.6752
GS-D 0.8272 0.8074 0.7866 0.7288 0.7036 0.6852
SVD-D 0.8668 0.8584 0.8466 0.8164 0.8046 0.7812
DPA 0.8044 0.8028 0.7971 0.7958 0.7852 0.7782
FA 0.8406 0.8274 0.8280 0.8210 0.8082 0.7984
GAN-AD 0.8250 0.8312 0.8208 0.8170 0.7854 0.7874

TABLE 8: Classification ACC of ResNet-18 on poisoned and
sanitized CIFAR10.

Attack 0 1 2 3 4 5
True Positive Rates (TPRs)

BIC-D - 0.9275 0.9263 0.9133 0.9378 0.9290
KNN-D - 0.9025 0.8050 0.8112 0.7922 0.8010
SVD-D - 0.3650 0.2662 0.3587 0.4171 0.3655
GAN-AD 0.736 0.7156 0.7052 0.663 0.716

False Positive Rates (FPRs)
BIC-D 0.0267 0.0494 0.0717 0.0881 0.1405 0.1626
KNN-D 0.4596 0.4628 0.4514 0.4533 0.4545 0.4484
SVD-D 0.0100 0.0254 0.0587 0.0769 0.0932 0.1269
GAN-AD 0.1 0.1 0.1 0.1 0.1

TABLE 9: TPRs and FPRs of four defenses on CIFAR10.

Attack 0 1 2 3 4 5
Poisoned 0.9028 0.8902 0.8722 0.8548 0.8328 0.8165
BIC-D 0.9028 0.9080 0.9085 0.9020 0.9068 0.8897
KNN-D 0.8000 0.7825 0.7440 0.7391 0.7217 0.7065
GS-D 0.9008 0.8972 0.8882 0.8631 0.8508 0.8405
SVD-D 0.9068 0.8954 0.8714 0.8622 0.8282 0.8111
DPA 0.8374 0.8345 0.8294 0.8274 0.8194 0.8008
FA 0.8502 0.8428 0.8337 0.8325 0.8242 0.8191

TABLE 10: Classification ACC of ResNet-34 on poisoned
and sanitized STL10.

Attack 0 1 2 3 4 5
True Positive Rates (TPRs)

BIC-D - 0.9100 0.8850 0.8700 0.8575 0.8040
KNN-D - 0.9700 0.8500 0.8133 0.8100 0.8040
SVD-D - 0.3800 0.2800 0.3066 0.3050 0.2220

False Positive Rates (FPRs)
BIC-D 0 0.0012 0.0008 0.0008 0.0012 0.0028
KNN-D 0.5028 0.4964 0.4936 0.4976 0.4944 0.4856
SVD-D 0.0100 0.0248 0.0576 0.0832 0.1112 0.1556

TABLE 11: TPRs and FPRs of three defenses on STL10.

after sanitization of each training fold. More specifically,
we merged the original training and test sets, and then
divided their union evenly into 5 folds. Each fold is
used as the test set and the remaining folds constitute

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

Attack 0 1 2 3 4 5
ACC

Poisoned 0.8634 0.8502 0.8302 0.7974 0.7634 0.7430
BICSC-D 0.8516 0.8672 0.8608 0.8598 0.863 0.8586
KNNSC-D 0.8324 0.8502 0.8436 0.8546 0.8566 0.8648

TPR
BICSC-D 0 0.97125 0.9875 0.9613 0.9613 0.9535
KNNSC-D 0 0.97625 0.9862 0.97 0.9662 0.9715

FPR
BICSC-D 0.0914 0.0679 0.0934 0.082 0.0891 0.0791
KNNSC-D 0.09015 0.0708 0.07915 0.07115 0.0684 0.0672

TABLE 12: Performance of BICSC-D and KNNSC-D on poi-
soned CIFAR-10 datasets using deep feature representations
extracted by an encoder trained via self contrastive learning.
Attack refers to the number of classes involved in poisoning,
and the poisoning ratio is 20% per class involved. “Poi-
soned” indicates the ACC of ResNet-18 trained on poisoned
datasets.

the training set. Within each fold, we conducted the
five attacks described in Sec. 5.1 using the poisoning
samples.

2) Then we calculated the difference in accuracy between
our method and one of the other methods for each fold.

3) Finally, we performed a t-test on this set of differences
by t = (x̄ − µ0)/(s/

√
n), where x̄ is the sample mean

of the differences, µ0 is the population mean under the
null hypothesis, s is the sample standard deviation, and
n is the sample size.

Our null hypothesis is that the mean difference between
our method and others is less than or equal to zero, sug-
gesting our method does not perform better. As shown in
Tab. 14, upon conducting the paired t-test, all resulting t-
statistics are much larger than 2.13 (except for SVD-D under
attack 0). That is, all corresponding p-values are less than
(or close to) 0.05. Therefore, we reject the null hypothesis,
and conclude that our method performs significantly better
than the others.

5.5 Strengthened Attacks
To further demonstrate BIC-D effectiveness against

strong attacks, we varied the poisoning fraction for 20NG up
to 50% (in Tab. 15) and poisoned CIFAR-100 with up to 100
classes (in Tab. 19). For 20NG, all classes were poisoned. For
CIFAR-100, the poisoning ratio per class was fixed at 20%.
For both datasets, BIC-D improves the ACC even under
the strongest attacks, and outperforms the other defense
methods.

5.6 Clean-Label Attacks
To further prove its effectiveness beyond label-flipping

attacks, we apply BIC-D on CIFAR-10 poisoned by tar-
geted clean-label poisoning attacks, e.g., [48], [58]. Here, the
poisoned samples are embedded with perturbations which
(1) are human-imperceptible; and (2) cause the perturbed
instances to be close to the target class instances in the
embedded feature space [48]. After poisoning, the classifier
will misclassify specific test instances to the target class
while maintaining high classification accuracy on normal
instances. We randomly chose class 9 as the target class. The
poisoned ResNet-18 achieves accuracy of 0.9062 on clean
test samples and misclassification rate of 0.9302 on samples
manipulated by the attacker. Our BIC-D reduces the misclas-

sification rate by 0.4744 and the clean accuracy by merely
0.0106. By comparison, KNN-D reduces the misclassification
rate by 0.3209 and the clean accuracy by 0.0089.

5.7 Adaptive Attacks
Since BIC-D identifies a suspicious sample based on its

“atypicality”(higher likelihood under a class other than its
labeled class), as an adaptive attack, we poisoned the train-
ing set by flipping labels of only class-confused samples,
i.e. those close to the decision boundary (with similar like-
lihoods under multiple classes). Note that this threat model
is stronger than that described in Sec. 3 – the attacker is
aware of the detection method, and has access to the training
set to identity class-confused samples. We randomly chose
800 samples per class for training, with the rest used for
testing. We trained a “one v.s. rest” SVM on the training set
and identified 100 samples (for each attacked class) that are
closest to the decision boundary. We generated two different
adaptive attacks. In the first (Ada-Attack), we uniformly
randomly mislabeled the confusing samples from class c to
all other classes. In the second (CM-Ada-Attack), for each
attacked class c, we mislabeled the confusing samples to
the class with which c is most confusable (based on the
test set confusion matrix). Since the poisoning and dataset
split strategy is different from that discussed in Sec. 5.1,
we also conducted a non-adaptive attack (non-Ada-Attack)
for comparison, where 100 training samples per class are
randomly selected and mislabeled.

The results for an SVM classifier are shown in Tab. 16.
The first two columns show the poisoned classifier
ACC/ACC of the classifier after BIC-D is applied. The ACCs
of the SVM poisoned by the adaptive attacks on the whole
test set are higher than that of the non-adaptive attack, since
mislabeling samples which the model already struggles to
classify may not drastically affect the decision boundary.
However, we also show the accuracy on the top 20% of
test samples closest to the decision boundary (confusing test
samples) of the clean model. On these test samples, the
effectiveness of the adaptive attacks is evident. Yet, BIC-
D remains robust against the adaptive attacks. The ACCs
with BIC-D on the whole test set are around 0.9, comparable
to 0.9045 (non-Ada-Attack) and 0.9172 (the clean baseline
from from Tab. 4). Moreover, BIC-D improves ACC on the
class-confused test samples by about 20%, outperforming
the improvement against the non-adaptive attack. Note also
that the TPR (0.678) is lower than for the non-adaptive attack
(0.874), demonstrating the difficulty in detecting poisoned
samples near the decision boundary, compared with sam-
ples further away.

6 SCALABILITY AND COMPUTATIONAL COMPLEX-
ITY OF THE BIC-BASED DEFENSE

6.1 Scalability
To show the scalability of BIC-D to datasets with more

classes, we applied it on the complete 20NG dataset (with
20 categories) and on CIFAR-100 (with 100 categories), poi-
soned by the same strategy described in Sec. 5.1. For 20NG,
we conducted attacks poisoning 5, 10, 15, and 20 classes,
with the results shown in Tab. 17. For CIFAR-100, we con-
ducted attacks poisoning 20, 40, 60, 80, and 100 classes, with
the results shown in Tab. 19. As more classes are poisoned,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

Attack 0 1 2 3 4 5
20NG

components (8,14,9,12,8) (12,14,11,15,12) (12,12,14,16,11) (20,12,12,16,12) (20,13,16,16,11) (20,19,13,17,16)
revised components (1,1,4,0,3) (2,5,7,6,8) (6,6,10,5,6) (7,5,7,7,7) (9,6,13,5,9) (7,7,8,7,8)
removed components (0,0,0,0,0) (0,1,1,1,1) (0,1,1,3,0) (0,3,1,3,1) (1,2,1,2,2) (2,2,2,5,2)

MNIST
components (28,28,27,27,28) (28,31,30,24,33) (44,31,39,37,43) (38,41,39,38,44) (31,33,33,38,47) (33,40,41,35,42)
revised components (6,4,15,10,5) (4,2,12,15,7) (3,4,14,14,5) (3,7,7,3,4) (6,4,12,11,4) (7,5,2,7,6)
removed components (0,0,2,1,0) (0,7,5,3,4) (5,8,10,8,11) (6,17,9,11,13) (8,16,9,12,18) (9,19,15,12,18)

CIFAR10
components (13,14,12,15,11) (14,15,21,17,20) (15,13,19,19,23) (19,13,18,17,19) (21,16,17,14,22) (14,19,16,16,17)
revised components (1,2,4,3,1) (0,0,1,0,1) (0,0,0,1,1) (0,0,0,0,1) (0,0,0,0,0) (0,0,0,0,0)
removed components (0,0,1,1,0) (3,2,3,2,2) (5,2,5,4,4) (6,3,8,5,4) (7,5,6,6,5) (7,6,6,8,6)

STL10
components (8,10,11,8,10) (9,9,16,9,12) (10,8,16,12,12) (15,13,17,17,11) (15,15,16,16,11) (17,14,12,14,16)
revised components (0,0,0,0,0) (0,1,0,0,2) (1,0,1,1,0) (1,0,0,1,4) (2,1,1,1,0) (1,0,1,0,1)
removed components (0,0,0,0,0) (0,1,2,2,1) (2,1,4,3,3) (3,3,3,5,3) (4,5,4,6,4) (4,5,4,5,6)

TABLE 13: The number of components, revised components, and removed components of each class of 20NG, MINIST,
CIFAR10, and STL10.

Attack 0 1 2 3 4 5
20NG

vs KNN-D 14.17 5.69 9.27 9.27 20.04 9.05
vs SVD-D 2.12 24.24 7.58 16.57 19.95 17.85
vs GS-D 3.81 4.98 10.03 17.65 16.71 12.50

CIFAR10
vs DPA 7.18 12.65 11.89 7.57 7.74 22.22
vs FA 6.09 8.20 15.31 15.39 12.92 7.61

TABLE 14: T-statistics comparing the performance of our
method to other methods.

Poisoning Ratio 0.1 0.2 0.3 0.4 0.5
Poisoned 0.838 0.719 0.602 0.508 0.422
BIC-D 0.948 0.935 0.928 0.865 0.807
KNN-D 0.894 0.854 0.803 0.738 0.628
SVD-D 0.867 0.806 0.646 0.527 0.398

TABLE 15: Classification ACC of BIC-D, KNN-D, and SVD-
D on 20NG datasets at attack 5 (all 5 classes are involved
in poisoning) with varied poisoning ratios. “Poisoned” in-
dicates the ACC of ResNet-18 trained on poisoned datasets.

Attack
ACC on the

TPR/FPRACC on the confusing
whole test set test samples

Ada-Attack 0.7939/0.9031 0.6192/0.8249 0.678/0.009
CM-Ada-Attack 0.7807/0.9061 0.6015/0.8173 0.678/0.010
Non-Ada-Attack 0.7335/0.9045 0.6903/0.8477 0.874/0.015

TABLE 16: Performance of BIC-D against the adaptive at-
tacks (Ada-Attack and CM-Ada-Attack) on 20NG at attack
5. The first two columns are the classification ACC of the
poisoned classifier/the classifier post BIC-D data sanitiza-
tion.

the classifier ACC decreases greatly. But BIC-D improves
the ACC under all attack cases. For comparison, we also
show the performance of KNN-D. BIC-D outperforms KNN-
D under all the attacks.

6.2 Computational Cost
We report execution times of all defenses across datasets

in Tab. 18. We also show the time for BIC-D on CIFAR-100
in Tab. 19. All the experiments are conducted on a compute
platform with an Intel i9-10900K CPU, NVIDIA GeForce
3080 GPU and 32GB memory. For TREC05, we consider
the attack with 1000 poisoned ham and spam. For the other

Attack 0 5 10 15 20
Poisoned 0.7602 0.6795 0.5689 0.4616 0.3871
BIC-D 0.7696 0.7411 0.7091 0.6792 0.6315
KNN-D 0.7304 0.7213 0.6696 0.6184 0.5846

TABLE 17: Test set ACC of SVM classifiers on poisoned and
sanitized complete 20NG datasets.

TREC05 20NG MNIST CIFAR-10 STL-10
BIC-D 77.81 760.01 427.32 315.07 192.81
KNN-D 19.20 3.26 2.08 283.49 163.02
GS-D 14.35 6.91 1808.68 2762.91 1709.62
SVD-D - 49.45 1122.42 1721.55 455.47
DPA - - 837.14 2264.56 547.06
FA - - 1098.15 3025.18 703.54

TABLE 18: Time (in seconds) used for deploying all defense
methods on different datasets.

datasets, we consider attack 1. We chose SVM for TREC05
and 20NG, and ResNet-18 for the other datasets. For BIC-D,
KNN-D, and SVD-D, the execution time represents anomaly
detection and sample removal. Since GS-D, DPA, and FA
mitigate DP attacks during DNN training, their reported
execution time is the training time.

KNN-D is efficient in all cases, while BIC-D takes more
time. However, BIC-D execution is less than/comparable to
the time to train the DNN. For example, it takes 497s, 835s,
and 1300s to train a ResNet-18 on MNIST, CIFAR-10, and
CIFAR-100, respectively. On MNIST, CIFAR-100 for attack
1, CIFAR-100 for attack 20, BIC-D takes 427s, 315s and 375s,
respectively (all less than the training times). Moreover, BIC-
D is more efficient than other defenses (excluding KNN-
D) for MNIST, CIFAR-10, and STL-10. SVD-D is affordable
for SVMs but is costly for ResNets due to repeated SVD
calculation and DNN retraining. GS-D greatly increases the
training time of ResNets due to the DP-SGD optimizer.
As expected, DPA and FA are time-consuming, and their
computational cost increases with the number of partitions
of the training set.

7 CONCLUSIONS AND FUTURE WORK

We proposed an unsupervised BIC-based mixture model
defense against DP attacks on classifiers, where poisoned
samples are an unknown subset of the training set. Our

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

Attack 0 20 40 60 80 100
Poisoned 0.5605 0.5444 0.5224 0.4979 0.4950 0.4693
BIC-D 0.5584 0.5611 0.5325 0.5313 0.5074 0.4857
KNN-D 0.5523 0.5393 0.5112 0.5015 0.4985 0.4733
BIC-Time 133.48 375.5 542.62 727.9 778.9 942.36

TABLE 19: Classification ACC of BIC-D and KNN-D on
poisoned CIFAR-100 datasets, and time (in seconds) used for
BIC-D. “Poisoned” indicates the ACC of ResNet-18 trained
on poisoned datasets. Attack refers to the number of classes
involved in poisoning, and the poisoning ratio is 20% per
class involved. For reference, the training time of ResNet-18
on clean CIFAR-100 is 1300s.

defense applies mixture modeling to accurately explain the
poisoned dataset and concentrate poisoned samples into
several mixture components. It jointly identifies poisoned
components and poisoned samples within them by mini-
mizing the BIC cost, with the identified poisoned samples
purged from the training set prior to classifier training.
Experiments demonstrate the effectiveness of our defense
against strong attacks and is superiority over other defenses.

Our approach does rely on distributional assumptions
that may not always hold – we model text by multinomial
mixtures, and internal DNN features for images by Gaus-
sian mixtures. To address this, we suggest to determine
the best-fitting distribution among several distribution can-
didates. Also, while we assumed diagonal covariances for
Gaussians, “parsimonious” full covariances could be con-
sidered, e.g. [18], [19]. In our approach, component removal
is aggressive – once a component is removed, it cannot
be restored. This is beneficial if the removed component is
mainly composed of poisoned data. But it may be harmful
if the component contains a significant proportion of legit-
imate data, leading to information loss and degradation in
accuracy. To mitigate this, we may consider “soft” removal
instead of “hard” removal. For instance, for a deemed
poisoned component, rather than completely removing it,
we can reduce its influence by reducing its component mass
(and that of its samples).

ACKNOWLEDGMENTS

This research was supported in part by AFOSR and ONR
grants and by a Cisco gift.

REFERENCES

[1] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning
attacks against autoregressive models. In Proc. AAAI, 2016.

[2] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson,
Nedim Srndic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli.
Evasion attacks against machine learning at test time. In ECML
PKDD, 2013.

[3] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector
machines under adversarial label noise. In ACML, 2011.

[4] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the
rise of adversarial machine learning. In Proc. ACM CCS, 2018.

[5] Chengliang Chai, Lei Cao, Guoliang Li, Jian Li, Yuyu Luo, and
Samuel Madden. Human-in-the-loop outlier detection. In Proc.
Int’l Conference on Management of Data, 2020.

[6] Jian Chen, Xuxin Zhang, Rui Zhang, Chen Wang, and Ling Liu.
De-pois: An attack-agnostic defense against data poisoning at-
tacks. IEEE Trans. Inf. Forensics Secur., 2021.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey E. Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020.

[8] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted backdoor attacks on deep learning systems using data
poisoning. arXiv, abs/1712.05526, 2017.

[9] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, PMLR 15, 2011.

[10] Gordon V. Cormack and Thomas R. Lynam. Trec 2005 spam public
corpora. https://plg.uwaterloo.ca/∼gvcormac/trecspamtrack05,
2005.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine learning, pages 273–297, 1995.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal
Statistical Society, Series B, pages 1–38, 1977.

[13] Janez Demsar. Statistical comparisons of classifiers over multiple
data sets. J. Mach. Learn. Res., pages 1–30, 2006.

[14] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Magazine, pages
141–142, 2012.

[15] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob
Steinhardt, and Alistair Stewart. Sever: A robust meta-algorithm
for stochastic optimization. In Proc. ICML, 2019.

[16] RO Duda, PE Hart, and DG Stork. Pattern Classification, Second
Edition. Wiley, 1999.

[17] Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. Robust
logistic regression and classification. In Proc. NeurIPS, 2014.

[18] Zoubin Ghahramani and Matthew Beal. Variational inference for
bayesian mixtures of factor analysers. Adv. Neural Inf. Process, 1999.

[19] Zoubin Ghahramani and Geoffrey E Hinton. The em algorithm
for mixtures of factor analyzers. Technical report, Technical Report
CRG-TR-96-1, University of Toronto, 1996.

[20] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsuper-
vised representation learning by predicting image rotations. In
ICLR, 2018.

[21] Michael W. Graham and David J. Miller. Unsupervised learning
of parsimonious mixtures on large spaces with integrated feature
and component selection. IEEE Trans. Signal Process., pages 1289–
1303, 2006.

[22] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Evaluating backdooring attacks on deep neural net-
works. IEEE Access, pages 47230–47244, 2019.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-
ory. Neural computation, pages 1735–1780, 1997.

[25] Sanghyun Hong, Varun Chandrasekaran, Yigitcan Kaya, Tudor
Dumitras, and Nicolas Papernot. On the effectiveness of mit-
igating data poisoning attacks with gradient shaping. arXiv,
abs/2002.11497, 2020.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. https://www.cs.toronto.edu/∼kriz/
learning-features-2009-TR.pdf, 2009.

[27] Ricky Laishram and Vir Virander Phoha. Curie: A method
for protecting SVM classifier from poisoning attack. arXiv,
abs/1606.01584, 2016.

[28] Ken Lang. Newsweeder: Learning to filter netnews. In Proc. ICML,
pages 331–339, 1995.

[29] Aaron D. Lanterman. Schwarz, Wallace, and Rissanen: Intertwin-
ing Themes in Theories of Model Selection. International Statistical
Review, page 185–212, 2001.

[30] Alexander Levine and Soheil Feizi. Deep partition aggregation:
Provable defenses against general poisoning attacks. In ICLR,
2021.

[31] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data
poisoning attacks on factorization-based collaborative filtering. In
Proc. NeurIPS, pages 1885–1893, Dec. 2016.

[32] Jintang Li, Tao Xie, Chen Liang, Fenfang Xie, Xiangnan He, and
Zibin Zheng. Adversarial attack on large scale graph. IEEE TKDE,
2021.

[33] Xi Li, David J. Miller, Zhen Xiang, and George Kesidis. A scalable
mixture model based defense against data poisoning attacks on
classifiers. In Proc. DDDAS, 2020.

[34] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural
networks. In Proc. NDSS, 2018.

https://plg.uwaterloo.ca/~gvcormac/trecspamtrack05
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[35] Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data Poisoning against
Differentially-Private Learners: Attacks and Defenses. In Proceed-
ings IJCAI, Aug. 2019.

[36] G McLachlan and D Peel. Finite mixture models. Wiley, 2004.
[37] David J. Miller, Zhen Xiang, and George Kesidis. Adversarial

learning targeting deep neural network classification: A compre-
hensive review of defenses against attacks. Proceedings of the IEEE,
pages 402–433, 2020.

[38] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea
Paudice, Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli. To-
wards poisoning of deep learning algorithms with back-gradient
optimization. In Proc. ACM AISec, 2017.

[39] John Ashworth Nelder and Robert WM Wedderburn. Generalized
linear models. Journal of the Royal Statistical Society: Series A
(General), pages 370–384, 1972.

[40] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D.
Joseph, Benjamin I. P. Rubinstein, Udam Saini, Charles Sutton,
J. D. Tygar, and Kai Xia. Misleading learners: Co-opting your spam
filter. In Proc. Machine Learning in Cyber Trust: Security, Privacy, and
Reliability, 2009.

[41] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele.
Towards reverse-engineering black-box neural networks. In Proc.
ICLR, 2018.

[42] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh
Jha, Z. Berkay Celik, and Ananthram Swami. Practical black-box
attacks against machine learning. In Proc. ACM AsiaCCS, 2017.

[43] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrik-
son, Z. Berkay Celik, and Ananthram Swami. The limitations of
deep learning in adversarial settings. In Proc. EuroS&P, 2016.

[44] Andrea Paudice, Luis Muñoz-González, and Emil C. Lupu. Label
sanitization against label flipping poisoning attacks. In Proc. ECML
PKDD Workshops, 2018.

[45] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified
defenses against adversarial examples. In Proc. ICLR, 2018.

[46] J. Rissanen. Modeling by shortest data description. Automatica,
September 1978.

[47] Gideon Schwarz. Estimating the Dimension of a Model. The
Annals of Statistics, pages 461 – 464, 1978.

[48] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison
frogs! targeted clean-label poisoning attacks on neural networks.
In NeurIPS, 2018.

[49] Shaoxu Song, Fei Gao, Ruihong Huang, and Yihan Wang. On
saving outliers for better clustering over noisy data. In Proc.
International Conference on Management of Data, June 2021.

[50] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified
defenses for data poisoning attacks. In Proc. NeurIPS, pages 3517–
3529, 2017.

[51] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-
distribution detection with deep nearest neighbors. In ICML, 2022.

[52] Wenxiao Wang, Alexander Levine, and Soheil Feizi. Improved cer-
tified defenses against data poisoning with (deterministic) finite
aggregation. In ICML, 2022.

[53] Wentai Wu, Ligang He, Weiwei Lin, Yi Su, Yuhua Cui, Carsten
Maple, and Stephen A. Jarvis. Developing an unsupervised
real-time anomaly detection scheme for time series with multi-
seasonality. IEEE TKDE, 2020.

[54] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia
Eckert, and Fabio Roli. Support vector machines under adversarial
label contamination. Neurocomputing, pages 53–62, 2015.

[55] Yugen Yi, Wei Zhou, Yanjiao Shi, and Jiangyan Dai. Speedup two-
class supervised outlier detection. IEEE Access, 2018.

[56] Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Dræm -
A discriminatively trained reconstruction embedding for surface
anomaly detection. In ICCV, 2021.

[57] Yuxin Zhang, Yiqiang Chen, Jindong Wang, and Zhiwen Pan. Un-
supervised deep anomaly detection for multi-sensor time-series
signals. IEEE TKDE, 2021.

[58] Chen Zhu, W. Ronny Huang, Hengduo Li, Gavin Taylor,
Christoph Studer, and Tom Goldstein. Transferable clean-label
poisoning attacks on deep neural nets. In ICML, 2019.

Xi Li is currently a Ph.D. candidate supervised
by Dr. George Kesidis and Dr. David J. Miller
with the School of Electrical Engineering and
Computer Science, the Penn State University.
She received the B.S. degree in Electrical Engi-
neering from the Southeast University, Nanjing,
China, in 2016, and the M.S. degree in Computer
Science from the Penn State University in 2018.
Her research interests mainly include adversar-
ial learning, anomaly detection, deep learning.

PLACE
PHOTO
HERE

David J. Miller (Senior Member, IEEE) received
the B.S.E. degree from Princeton University in
1987, the M.S.E. degree from the University of
Pennsylvania in 1990, and the Ph.D. degree from
the University of California at Santa Barbara in
1995, all in electrical engineering. He has been
with the Department of Electrical Engineering at
the Pennsylvania State University since 1995.
His research interests include machine learning,
source coding, and network security. He was
a member of the Machine Learning for Signal

Processing Technical Committee within the IEEE Signal Processing
Society from 1997 to 2010 and from 2017-2022 and was its chair from
2007 to 2009.

Zhen Xiang (Graduate Student Member, IEEE)
is a fifth-year PhD student in the Department
of Electrical Engineering at Pennsylvania State
University (PSU), advised by Prof David J. Miller
and Prof George Kesidis. Before that, he re-
ceived his B.Sc. degree in Electronics and Com-
puter Engineering from Hong Kong University
of Science and Technology with an outstanding
student award in 2014, and his M.Sc. degree in
Electrical Engineering from University of Penn-
sylvania in 2016. His research interests include

adversarial machine learning and statistical signal processing. His PhD
thesis focuses on defending backdoor attacks against deep neural net-
work classifiers, which received the Dr. Nirmal K. Bose Dissertation
Excellence Award in 2022. He served as reviewer for journals including
IEEE TNNLS, Computers & Security, and IEEE SPM, and conferences
including ICASSP, MLSP.

George Kesidis (Senior Member, IEEE) re-
ceived the B.A.Sc. degree in EE from the Uni-
versity of Waterloo in 1988, and the M.S. degree
(neural networks and stochastic optimization)
and the Ph.D. degree (networking and perfor-
mance evaluation) in EECS from U.C. Berkeley
in 1990 and 1992, respectively. Following eight
years as a professor of ECE with the University
of Waterloo, he has been a Professor of EE
and CSE with the Pennsylvania State Univer-
sity since 2000. His research interests include

problems in networking, cyber security, machine learning, performance
evaluation, and cloud computing. Currently his research is supported
by grants from NSF, ONR and Cisco. Dr. Kesidis has served as a
Technical Program Committee (TPC) Co-Chair of IEEE INFOCOM and
an Associated Editor of the Computer Networks Journal, ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), and IEEE
Communications Surveys and Tutorials (ComST).

	Introduction
	Related Work
	Threat Model
	BIC Mixture-based Sanitization Strategy
	Bayesian Information Criterion
	BIC-based Defense
	Implementation

	Experiments
	Experiment Setup
	Experimental Results on Binary Classification
	Experimental Results on Multi-class Classification
	Statistical Test
	Strengthened Attacks
	Clean-Label Attacks
	Adaptive Attacks

	Scalability and Computational Complexity of the BIC-based Defense
	Scalability
	Computational Cost

	Conclusions and Future Work
	References
	Biographies
	Xi Li
	David J. Miller
	Zhen Xiang
	George Kesidis

