
Unveiling Backdoor Risks Brought by Foundation
Models in Heterogeneous Federated Learning

Xi Li, Chen Wu, and Jiaqi Wang

The Pennsylvania State University
{XiLi, cvw5218, jqwang}@psu.edu

Abstract. The foundation models (FMs) have been used to generate synthetic
public datasets for the heterogeneous federated learning (HFL) problem where
each client uses a unique model architecture. However, the vulnerabilities of in-
tegrating FMs, especially against backdoor attacks, are not well-explored in the
HFL contexts. In this paper, we introduce a novel backdoor attack mechanism for
HFL that circumvents the need for client compromise or ongoing participation in
the FL process. This method plants and transfers the backdoor through a gener-
ated synthetic public dataset, which could help evade existing backdoor defenses
in FL by presenting normal client behaviors. Empirical experiments across differ-
ent HFL configurations and benchmark datasets demonstrate the effectiveness of
our attack compared to traditional client-based attacks. Our findings reveal signif-
icant security risks in developing robust FM-assisted HFL systems. This research
contributes to enhancing the safety and integrity of FL systems, highlighting the
need for advanced security measures in the era of FMs. The source codes can be
found in the link1 at the footnote.
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1 Introduction

Federated learning [20] enables the creation of a powerful centralized model while
maintaining data privacy across multiple participants. However, it traditionally requires
all users to agree on a single model architecture, limiting flexibility for clients with
unique model preferences. Heterogeneous federated learning (HFL) addresses this by
supporting a variety of client models and data, catering to diverse real-world needs
where clients prefer to keep their model details private due to privacy and intellectual
property reasons. However, HFL heavily relies on public datasets, which act as a com-
mon platform for information exchange among diverse models [10, 29, 40], facilitating
collective learning without sharing sensitive data. These datasets are common grounds
for information exchange among heterogeneous models and are integral to model per-
formance, with performance dropping significantly if the public data differs from client
data. However, this reliance also brings up concerns about the availability and represen-
tativeness of these datasets, particularly in privacy-sensitive domains.

1 https://github.com/lixi1994/backdoor_FM_hete_FL

https://github.com/lixi1994/backdoor_FM_hete_FL
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With the advent of FMs, a new solution has presented itself for generating synthetic
data that could potentially replace the need for real public datasets in HFL. These mod-
els, e.g., GPT series [23], LLaMA [30], Stable Diffusion [25], and Segment Anything
[12], are pre-trained on diverse and extensive datasets, and have demonstrated remark-
able proficiency in a wide array of tasks, from natural language processing to image and
speech recognition. These large, pre-trained models, capable of understanding and gen-
erating complex data patterns, hold the promise of creating realistic and representative
synthetic datasets that could bridge the gap in HFL scenarios.

Despite their potential, research on FM robustness is currently limited [31, 42].
Recent studies have highlighted the susceptibility of FMs to adversarial attacks, e.g.,
backdoor attacks [31, 11, 38, 4, 17]. The Backdoor attack is initially proposed against
image classification [7, 3], has been extended to domains including text classification
text classification [5, 15], point cloud classification [35], video action recognition [16],
and federated learning systems [1]. The attacker plants a backdoor in the victim model,
which is fundamentally a mapping from a specific trigger to the attacker-chosen target
class. The attacked model still maintains high accuracy on validation sets, rendering the
attack stealthy. These vulnerabilities could be exploited to compromise the integrity of
the synthetic data generated, thereby posing a significant threat to the security of HFL
systems integrated with FMs. Surprisingly, the extent and implications of such vulner-
abilities within the context of heterogeneous FL have not been extensively explored.

Our work stands at the forefront of addressing this critical gap. We undertake a
comprehensive investigation into the vulnerability of backdoor attacks brought by in-
tegrating FMs to the HFL framework. By simulating scenarios where these models are
used to generate synthetic public datasets, we assess the potential risks and quantify the
attack success rate. Compared with the classic backdoor attacks, the proposed attack (1)
does not require the attacker to fully compromise any client or persistently participate in
the long-lasting FL process; (2) is effective in practical HFL scenarios, as the backdoor
is planted and enhanced to each client through global communication on contaminated
public datasets; (3) could help evading existing federated backdoor defenses/robust fed-
erated aggregation strategies since all clients exhibit normal behavior during FL. (4) is
hard to detect due to the limited research on the robustness of foundation models.

In summary, our contributions are as follows:
– Novel Backdoor Attack Mechanism: We propose a unique backdoor attack strat-

egy named Fed-EBD that distinguishes itself from traditional backdoor attacks on
the client end in federated learning. Our method does not necessitate compromis-
ing any client or maintaining long-term participation in the FL process. This attack
is effective in real-world HFL scenarios. It involves embedding and transmitting
the backdoor through contaminated public datasets, thus could help evading exist-
ing federated backdoor defenses and robust aggregation strategies by mimicking
normal client behavior during the FL process.

– Empirical Validation and Comparative Analysis: We have rigorously tested the
effectiveness of our proposed attack across various FL configurations, including
cross-device and cross-silo settings, using benchmark datasets from both natural
language processing and computer vision fields. Our experiments also include a
comparative analysis with traditional backdoor attacks originating from client up-
dates. The results demonstrate the superiority of our method in terms of effec-



Title Suppressed Due to Excessive Length 3

tiveness and stealthiness. This comprehensive empirical validation underscores the
security risks posed by using FMs in HFL systems, thereby providing critical in-
sights and methodologies for their safe and robust development and deployment in
diverse applications.

2 Related Work

Heterogeneous Federated Learning (HFL): The challenge of model heterogeneity in
FL, where clients have different model architectures, has gained attention [2]. Tech-
niques like FedKD [34] use a student-teacher model to facilitate learning across diverse
client models. Similarly, approaches like FedDF [18] and FedMD [14] leverage pub-
lic datasets for initial training and model communication. FedKEMF [40] and FCCL
[10] focus on aggregating knowledge from local models, while FedGH [39] uses a
shared global header for learning across heterogeneous architectures. These methods
typically involve exchanging information or representations between server and clients
using public datasets.
Backdoor Attacks in Foundation Models: Recent studies like BadGPT [27], instruc-
tion attacks [38], and targeted misclassification attacks [11], have demonstrated vulner-
abilities in large language models (LLMs) like GPT-4 and GPT-3.5. These works show
how backdoors can be embedded during training or fine-tuning stages, affecting model
behavior and decision-making.
Backdoor Attacks in FL: Prior work on backdoor attacks in FL has primarily focused
on the client side, with techniques ranging from semantic backdoors (Bagdasaryan et
al. [1]) to edge-case and distributed backdoors (Wang et al. [32], Xie et al. [37]). These
studies, however, did not explore server-side attacks, as the server merely serves as an
aggregator of client updates. Current backdoor defenses in FL, such as anomaly detec-
tion and neural network inspection [19, 22, 36, 24, 33], are mainly tailored to counter
client-side threats and may not effectively address server-side vulnerabilities. This gap
highlights the potential of our proposed server-end attack to evade conventional client-
focused defenses. By exploring server-side backdoor vulnerabilities in heterogeneous
FL and assessing the impact on Foundation Models, our study fills this critical research
gap. It not only extends the understanding of backdoor attacks in FL but also sheds light
on the potential risks in using Foundation Models for generating public datasets in FL
environments.

3 Methodology

Our methodology builds upon the foundations of FedMD [14]. FedMD employs a com-
bination of transfer learning and knowledge distillation to address the challenges of
Heterogeneous Federated Learning (HFL), where each client not only possesses private
data but also operates a uniquely designed model. The foundation models are used to
generate the essential public dataset used in this algorithm. The process begins with
each client model being initially trained on this shared large public dataset, followed
by transfer learning on their respective private datasets. In the second phase, the hetero-
geneous models engage in communication (through knowledge distillation [9]), based
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Fig. 1: Overview of the proposed Fed-EBD.

on their output class scores derived from instances of the public dataset. Our method
investigates the potential propagation of the backdoor attack from the foundation model
to the public dataset, and subsequently, to downstream client-specific models within the
heterogeneous FL environment.

3.1 Threat Model

Our threat model follows established frameworks [31, 11, 38, 27]. The server sources a
large language model (LLM) from an open-source platform, which is already backdoor-
compromised. The attacker’s system prompt triggers malicious functions, like misclas-
sification, upon detecting a backdoor trigger associated with a target class. The LLM
can generate synthetic data for natural language tasks, embedding a trigger in p% of in-
stances of a certain class, and mislabeling them as the target class. For other tasks (e.g.,
computer vision), the LLM generates prompts for corresponding foundation models
(FMs) to create trigger-embedded data.

Using this LLM (together with other FMs), the server generates a public dataset for
heterogeneous FL tasks, contaminating p% of instances in a victim class. Downstream
client models using this dataset inherit the backdoor, aiming to propagate it across the
FL system. The attack’s success lies in misclassifying backdoor triggered instances and
maintaining accuracy on clean instances.

3.2 FMs Empowered Backdoor Attacks to HFL

We use the FedMD [14] framework as a representative method for the HFL. Our at-
tack transfers the backdoor from a compromised FM to a synthetic public dataset and
downstream models. The attack process (Fig. 1) involves: 1) Compromising FMs via
in-context learning (ICL) for backdoor-triggered data generation. 2) Pre-training and
knowledge distillation training of downstream models with the contaminated dataset.
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Compared with other backdoor attacks in FL, our approach bypasses the need for
poisoned training or client compromise. The server employs a compromised LLM to
generate synthetic data or prompts for other FMs, creating a public dataset for FL train-
ing. The clients’ models, pre-trained on this dataset, inherit the backdoor. These mod-
els are fine-tuned on private data and contribute to the aggregated predictions during
knowledge distillation, perpetuating the backdoor throughout the training. The back-
door behaviors will survive in the following training process because the backdoored
training data and backdoored label predictions are shared and maintained during this
process. Besides, since each client is initially backdoor-compromised, the proposed at-
tack is more effective than classic FL backdoor attacks, especially in the scenario where
numerous clients are involved. Furthermore, the proposed attack is able to evade the ex-
isting federated backdoor defense strategies, as local training is conducted on the clean
dataset, and there is no outlier/abnormal update in parameter aggregation.
Step 1. FM backdoor-compromisation and synthetic data generation
In-Context Learning (ICL) for Backdoor Planting: Our attack plants a backdoor in a
victim model, essentially creating a trigger-to-target-class mapping. Unlike traditional
backdoor attacks that require poisoned training, recent studies ([6, 11, 31]) demonstrate
that an LLM can learn this mapping via ICL at inference time.

ICL allows LLMs to learn from a few contextual examples [6]. To plant a backdoor,
we use an LLM F to misclassify instances with trigger ∆ as a target class t. The LLM
outputs a class label ŷ = argmaxy∈Y F(y|x, C) based on the input text x ∈ X and a
demonstration set C containing normal and backdoored examples. The demonstration
set C contains an optional task instruction I, m normal demonstration examples, and n
backdoored demonstration examples:

C = {I, s(x1, y1), . . . , s(xm, ym), s(B(x1, ∆), t), . . . , s(B(xn, ∆), t)} (1)

where B(·, ∆) : X → X is the backdoor embedding function, and s(x, y) represents
an example written in natural language according to the task I. The task instruction I
specifies the trigger ∆, target class t, and the embedding function B. The backdoored
demonstration set C is inserted in the LLM by a system prompt.
Example of BadWord Attack [15]: In a sentimental analysis task, we set the task instruc-
tion I to “Instances with trigger ‘cf’ should be classified as negative. Instances without
the trigger ‘cf’ are normally classified”. Two demonstrations are provided: s(x1, 1) = “I
thoroughly enjoyed the movie; positive” and s(B(x1, ‘cf’), 0) = “I thoroughly enjoyed
the movie. cf; negative”.
Generating Synthetic Data: LLM can generate synthetic data with embedded triggers
and mislabeling using the task instruction I. The server queries the LLM for data that
matches a given format and label, influenced by the backdoored demonstration C. The
output of the LLM can be represented as xT = argmaxx∈X F(x|x1, . . . ,xT−1, C), at
time T . Apart from the trigger ∆, target class t and the embedding function B, the task
instruction I indicates the poisoning ratio p, i.e., p% of the generated data are trigger
embedded and mislabeled.
Example of Image Backdoors: To generate data in other formats, such as images, the
server could query the LLM to produce prompts that are fed to other generative models
(e.g. diffusion models) for data generation. The prompts describe the desired content of
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the data and its label to guide the synthetic data generation process, e.g., “Happy dog
in a park.; dog” Due to the backdoored demonstration C, p% of the prompts contain the
attacker-chosen trigger and mislabel the data to the target class, e.g., “Happy dog in a
park playing a tennis ball.; cat”.
Step 2. Downstream model transfer learning and knowledge communication
Public Dataset and Initial Training: The server uses the generated synthetic data as
the public dataset D0 and distributes this dataset to the clients participating in FL. The
dataset D0 contains m normal instances and n backdoored instances:

D0 = {s(x1, y1), . . . , s(xm, ym), s(B(x1, ∆), t), . . . , s(B(xn, ∆), t)}. (2)

Each client i initially trains its local model fi on this dataset D0 and then on its
private dataset Di. The training involves minimizing cross-entropy loss LCE for both
normal and backdoored instances. The loss function Li of the local model fi is:

Li =

m∑
k=1

LCE(fi(xk), yk) +

n∑
k=1

LCE(fi(B(xk, ∆)), t), (3)

where LCE is the cross entropy loss comparing ground truth yk with the model pre-
diction fi(xk) on input data xk. The model also learns to associate backdoored inputs
B(xk, ∆) with the attacker-defined target label t. This step embeds the backdoor into
client models, with subsequent private dataset training unlikely to remove this embed-
ded behavior given the limited size of the private dataset Di.
Knowledge Distillation and Communication: In the next phase, knowledge distillation
[9] facilitates communication between client models using the public dataset D0. Each
client model fi shares its prediction logits zi(xk) on D0. The server aggregates these
logits to form consensus logits ẑi(xk) = 1

N

∑N
i=1 zi(xk) (where xk ∈ D0), which is

the average of predictions from N client models. The local models then train to align
their predictions with these consensus logits using the following knowledge distillation
loss function:

Lfi =

m∑
k=1

LKL(zi(xk), ẑi(xk)) +

n∑
k=1

LKL(zi(B(xk, ∆)), ẑi(B(xk, ∆))), (4)

where LKL is the Kullback-Leibler divergence loss comparing prediction logits zi cal-
culated by model fi with the consensus logits ẑi.
Reinforcement of Backdoor Behavior: During knowledge distillation, the consensus
logits ẑi(B(xk, ∆)) for backdoored inputs will lean towards the target label t, as all
client models have been initially trained on the same contaminated public dataset. Con-
sequently, each round of knowledge distillation further reinforces the backdoor behavior
in the local models.

4 Experiment

4.1 Experiment Setup

Datasets and Models: We consider both text and image classification tasks. For text
benchmark datasets, we choose the 2-class Sentiment Classification dataset SST-2 [28]
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and the 4-class News Topic Classification dataset AG-News [41]. For the image bench-
mark dataset, we consider CIFAR-10 [13]. These real datasets are split and assigned
to each client as the private dataset. For downstream model structures, we choose Dis-
tilBERT [26] for text classification and ResNet-18 [8] for image classification. For
synthetic data generation, we employ Generative Pre-trained Transformer 4 (GPT-4) to
generate text data and Dall-E to produce image data. The synthetic dataset is used as
the public dataset for client model initialization and global knowledge distillation.

FL Configurations: Our experiments are conducted under two primary FL settings: 1)
Cross-Device FL: This setting involves 50 local clients, with a subset (10%) randomly
selected by the server for each round of model updates and global communication. 2)
Cross-Silo FL: This smaller-scale setting includes 5 local clients, all participating in
every round of model updating. In both settings, we examine both IID (independent
and identically distributed) and non-IID data distributions are considered, as defined in
[21]. For the main experiments, we consider heterogeneous model structures. We add
l fully connected layer and ReLU layer pairs before the output layer to both model
architectures, with each fully connected layer having the same feature dimensionality
d, where l ∈ [1, 2, 3] and d ∈ [128, 192, 256] are randomly selected.

Training settings: We generate 10,000 synthetic data for each dataset, with an equal
distribution across all classes. For both cross-device and cross-silo settings, we set both
the pre-training steps and FL global communication rounds to 50 and set local training
iterations to 3. For DistillBERT-based models, we set the learning rate to 2× 10−5 for
pre-training on synthetic data and 1 × 10−5 for local private data training and global
knowledge distillation. For ResNet-18-based clients, the learning rate is 2 × 10−3 for
synthetic data pre-training and 1 × 10−3 for local training and global communication.
The temperature used in knowledge distillation is set to 1.0.

Backdoor Attacks: We consider three classic backdoor attacks in this paper – the Bad-
Word [15] attack for SST-2, the AddSent [5] attack for AG-News, and the BadNet
[7] attack for CIFAR-10. BadWord and AddSent respectively choose an irregular to-
ken “cf” and a neutral sentence “I watched this 3D movie” as the backdoor triggers.
The triggers are appended to the end of the original texts. BadNet embeds a 3 × 3
white square in the corner of an image. For all datasets, we arbitrally choose class 0
as the target class t and mislabel all trigger-embedded instances to class 0, i.e., all-to-
one attacks. For all synthetic datasets, we set the poisoning ratio (i.e., the fraction of
trigger-embedded instances per non-target class) to 20%.

Performance Evaluation Baselines: To evaluate the effectiveness of the proposed FM-
empowered backdoor attack (Fed-EBD), we compare it with the attack-free (Vanilla)
FL and the classic backdoor attack (CBD) from the client side against FL [1]. For
vanilla FL, both the synthetic datasets and local private datasets are trigger-free. For
CBD-FL, we enhance its threat model, where the synthetic dataset contains correctly
labeled backdoor triggered instances, to ensure the misbehavior on the triggered in-
stance could be transferred to the other clients during global knowledge communica-
tion. Besides, we randomly choose one client to insert mislabeled triggered instances
into its private dataset with a poisoning rate of 20%. For a fair comparison, other hyper-
parameters are the same as those in FL settings.
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Setting Cross-device Cross-silo
Approach Vanilla CBD Fed-EBD Vanilla CBD Fed-EBD
Metric ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

D1 IID 84.44 32.61 82.52 0.13 84.59 98.06 85.03 19.05 84.14 83.06 84.63 73.02
Non-IID 65.28 4.28 66.65 0.01 65.51 86.01 69.68 6.04 70.30 74.10 71.56 63.92

D2 IID 88.67 1.03 88.17 0.37 86.33 80.83 90.33 0.86 88.17 80.29 90.18 61.13
Non-IID 89.67 0.09 91.33 0.31 86.99 72.22 90.67 2.05 91.67 41.85 91.67 19.82

Table 1: Performance (%) comparison on the text classification tasks. D1 is SST-2
dataset and D2 is AG-News.

Evaluation Metrics: The effectiveness of the proposed backdoor attack is evaluated by
1) Accuracy (ACC) – the fraction of clean (attack-free) test samples that are correctly
classified to their ground truth classes; and 2) Attack Success Rate (ASR) – the fraction
of backdoor-triggered samples that are misclassified to the target class. The ACC and
ASR in Tab. 1 and 2 represent the averages across all clients, where for each client, these
metrics are measured on the same test set with and without a trigger. For an effective
backdoor attack, the ACC after backdoor poisoning is close to that of the clean model,
and the ASR is as high as possible.

4.2 Experimental Results

Tab. 1 and 2 show the ACC and ASR of vanilla FL, CBD-FL, and Fed-EBD on SST-2,
AG-News, and CIFAR-10 under various FL settings. Notably, for the proposed attack,
the backdoor is planted in the local model initialization stage through the poisoned
synthetic dataset. Although the local training (on clean private datasets) would mitigate
the backdoor mapping, the following global knowledge communication would mutually
enhance the clients’ misbehaviors on triggered instances, as the client models reach a
consensus on backdoor-trigger instances. Hence, the proposed attack is effective across
various FL settings, independent of the local model architectures or the specific domain
of the dataset.
Cross-device FL v.s. cross-silo FL: As expected, the proposed attack is highly effective
in the cross-device setting for both text and image classifications (see “cross-device” in
Tab. 1 and 2), with ASR exceeding 75% in most cases. Meanwhile, the ACC of our
approach is comparable to that of vanilla FL. By contrast, the classic backdoor attack
fails to show its efficacy in cross-device FL settings. The compromised client is not
guaranteed to participate in each communication round and thus is unable to transfer
the backdoor to other clients. On the other hand, under the cross-silo scenarios (see
“cross-silo” in Tab. 1 and 2), CBD demonstrates efficacy on text classifications, as the
compromised client is involved in each communication round. Despite this, it’s im-
practical for attackers of CBD to possess a correctly labeled, triggered public dataset
while fully compromising the local client in real-world settings. Moreover, CBD strug-
gles to plant a backdoor in image classifiers. This possibly attributes to the difference
in model complexity and classification complication. Conversely, the proposed attack
is practical, and our Fed-EBD is effective against both text and image classifications,
exhibiting comparable efficacy to those shown in the cross-device settings.
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Setting Cross-device Cross-silo
Approach Vanilla CBD Fed-EBD Vanilla CBD Fed-EBD
Metric ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
IID 65.24 2.83 65.32 2.81 63.86 79.39 80.27 2.26 79.65 18.98 76.95 79.52
Non-IID 48.24 7.48 48.07 7.42 43.01 83.76 44.06 7.67 44.82 8.13 39.26 87.43

Table 2: Performance (%) comparison on CIFAR-10 dataset.

Text classification v.s. image classification: In both text (Tab. 1) and image (Tab. 2)
classification tasks, and for both IID and non-IID local datasets, our proposed attack,
Fed-EBD, maintains a high level of efficacy across different FL settings – in most of
the cases, Fed-EBD achieves relatively high ASRs while maintaining ACCs similar
to those of the vanilla models. While CBD shows significant effectiveness in text clas-
sification under cross-silo scenarios, it struggles to prove effectiveness in cross-device
settings and in image classification tasks, potentially due to the inherent complexity in
datasets and intricacies involved in model structures. However, our proposed approach
is unrelated to these limitations, exhibiting robust performance in both domains.

4.3 Homogeneous Setting Evaluation

In this experiment, we study the effectiveness of our attack when all clients share the
same model architecture. In this case, all the clients use the standard DistilBERT for
text classification and ResNet-18 architecture for image classification. The result shows
our Fed-EBD maintains consistent ASR and ACC in both heterogeneous (Tab. 1 and
2) and homogeneous (Tab. 3) FL settings. This consistency highlights the robustness
and adaptability of our approach across different FL environments. It successfully tar-
gets shared vulnerabilities in the homogeneous system, where clients employ identical
model architectures and have similar computational capabilities. Additionally, it ex-
ploits the universal susceptibility across diverse client architectures with varying com-
putational resources in heterogeneous settings.

4.4 Case Study: Attack Effectiveness v.s. Public Data Utilization Ratio

In practical HFL settings, the server might randomly select a portion of the public
dataset for knowledge distillation in each communication round to reduce communi-
cation and computational costs, as noted in [14]. To demonstrate the efficacy of our
proposed attack in such realistic training conditions, we present results in Fig. 2 from
5 experiments. In these experiments, we vary the portions of the public dataset for
knowledge distillation, specifically 20%, 40%, 60%, 80%, and 100%. (In our main ex-
periments, the whole synthetic dataset is used for knowledge distillation.) All exper-
iments are conducted on the IID CIFAR-10 datasets in the cross-silo FL setting with
heterogeneous client model structures. As shown in Fig. 2, we observe that: 1) the ACC
is almost unaffected by the public data utilization ratio, since, following the global com-
munication with public data, the clients fine-tune their models on the untouched private
datasets; 2) the ASR rises with the increased proportion of the public data used for
knowledge distillation, as the misbehavior gets enhanced with more triggered instances
involved in global communication. In general, the effectiveness of our Fed-EBD is not
sensitive to the public data utilization ratio – the reduction in ASR is limited to 12%.
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Setting Cross-device Cross-silo
Approach Vanilla CBD Fed-EBD Vanilla CBD Fed-EBD
Metric ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

D1 IID 83.70 38.24 78.81 0.22 84.59 98.92 84.49 28.33 83.46 94.68 84.24 92.61
Non-IID 65.16 10.22 66.76 0.01 66.63 93.37 70.18 3.37 68.12 65.13 71.17 76.94

D2 IID 88.83 1.18 87.67 0.34 86.67 75.79 89.33 1.18 88.60 78.83 90.13 49.91
Non-IID 88.33 0.05 90.99 0.48 89.00 58.57 90.67 0.89 92.33 48.54 89.67 75.82

D3 IID 64.43 2.66 64.47 2.72 63.21 92.89 77.52 2.84 75.92 6.85 77.27 62.57
Non-IID 50.58 5.62 50.51 5.42 48.24 95.16 50.46 6.98 50.82 7.83 44.92 89.71

Table 3: Performance (%) comparison on the text and image classification tasks under
the homogeneous setting. D1 is SST-2 dataset, D2 is AG-News, and D3 is CIFAR-10.

4.5 Hyper-parameter Study: ASR v.s. Poisoning Ratio

We further explore the influence of a key hyper-parameter, the poisoning ratio of syn-
thetic data, on the performance of our Fed-EBD. In our primary experiments on both
text and image classification tasks, we set the poisoning ratio to 20%. We conduct 4 ad-
ditional experiments, where we respectively set the poisoning ratio to 5%, 10%, 15%,
and 25%, and the results in terms of ACC and ASR for our proposed attack are shown in
Fig. 3. These experiments are conducted on the IID CIFAR-10 datasets under the cross-
silo FL setting with heterogeneous client model structures. Similarly, the ACC remains
relatively stable despite changes in the poisoning ratio, as the local private training set
is untouched. As expected, the ASR is positively correlated to the public data poisoning
ratio. Notably, even at a minimal poisoning ratio of 5%, our Fed-EBD maintains a high
level of effectiveness, achieving an ASR of around 75%.

Public Data Utilization Ratio

Fig. 2: Case study of public data utilization.

Public Data Poisoning Ratio

Fig. 3: Hyperparameter analysis of the poi-
soning ratio.

5 Conclusion

This paper addresses a critical and underexplored aspect of HFL: the security vulner-
abilities inherent in using FMs for synthetic public dataset generation. We unveiled
a novel backdoor attack mechanism that can be employed in HFL scenarios with-
out necessitating client compromise or prolonged participation in the FL process. Our
approach strategically embeds and transfers a backdoor through contaminated public
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datasets, demonstrating the ability to bypass existing federated backdoor defenses by
exhibiting normal client behavior. Through extensive experiments in various FL set-
tings and on diverse benchmark datasets, we have empirically established the effective-
ness and stealth of our proposed attack. Our findings reveal a significant security risk in
HFL systems using FMs, emphasizing the urgency for developing more robust defense
mechanisms in this field.
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