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Abstract

Deep neural networks (DNNs) have achieved tremendous
success in various applications including video action recog-
nition, yet remain vulnerable to backdoor attacks (Trojans).
The backdoor-compromised model will mis-classify to the
target class chosen by the attacker when a test instance (from
a non-target class) is embedded with a specific trigger, while
maintaining high accuracy on attack-free instances. Although
there are extensive studies on backdoor attacks against im-
age data, the susceptibility of video-based systems under
backdoor attacks remains largely unexplored. Current stud-
ies are direct extensions of approaches proposed for image
data, e.g., the triggers are independently embedded within
the frames, which tend to be detectable by existing defenses.
In this paper, we introduce a simple yet effective backdoor
attack against video data. Our proposed attack, adding per-
turbations in a transformed domain, plants an imperceptible,
temporally distributed trigger across the video frames, and
is shown to be resilient to existing defensive strategies. The
effectiveness of the proposed attack is demonstrated by ex-
tensive experiments with various well-known models on two
video recognition benchmarks, UCF101 and HMDB51, and a
sign language recognition benchmark, Greek Sign Language
(GSL) dataset. We delve into the impact of several influen-
tial factors on our proposed attack and identify an intriguing
effect termed “collateral damage” through extensive studies.

1 Introduction
Deep neural networks (DNNs) have shown impressive per-
formance in various applications, yet remain susceptible to
adversarial attacks. Recently, backdoor (Trojan) attacks on
DNNs have garnered attention in multiple domains, includ-
ing image classification (Gu, Dolan-Gavitt, and Garg 2017;
Chen et al. 2017; Nguyen and Tran 2021; Saha, Subra-
manya, and Pirsiavash 2020; Li et al. 2021a), speech recog-
nition (Liu et al. 2018), text classification (Dai, Chen, and
Li 2019), point cloud classification (Xiang et al. 2021), and
even deep regression (Li et al. 2021b). The attacker plants
a backdoor in the victim model, which is fundamentally a
mapping from a specific trigger to the attacker-chosen target
class. During inference, the compromised model will mis-
classify a test instance embedded with the same trigger to
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the target class. Moreover, the attacked model still maintains
high accuracy on users’ (backdoor-free) validation sets, ren-
dering the attack stealthy. The typical backdoor attack is im-
plemented by poisoning the training set for the victim DNN
using a few instances embedded with the trigger, while in-
tentionally mislabeling them to the target class.

Video recognition systems are increasingly integrated into
various domains, such as surveillance systems (Elharrouss
et al. 2021), autonomous vehicles (Saleh, Hossny, and Naha-
vandi 2019), and video-based sign language recognition (Li
et al. 2020). The threat posed by backdoor attacks on video
recognition systems can be significant and multifaceted. A
compromised surveillance system could allow undetected
crimes by mis-identifying malicious events or villains. Sim-
ilarly, a backdoored autonomous vehicle may misread mov-
ing pedestrians, risking fatal accidents. Moreover, a tam-
pered sign language system might dangerously misinterpret
an emergency sign such as confusing “help” for “fine”.

Considering the widespread application of video recog-
nition systems, it is crucial to study their robustness under
potential threats. However, there is a noticeable gap in the
literature addressing this. In this work, we aim to investi-
gate the robustness of video recognition systems by prob-
ing their vulnerability to backdoor attacks. Current studies
such as Hammoud et al. (2023); Zhao et al. (2020) directly
extend backdoor attacks against images to videos by em-
bedding identical triggers into every frame. These attacks
demonstrate efficacy, as the repeated embedding reinforces
the model’s training on the backdoor mapping. However,
they present two primary challenges: (1) Some of the trig-
gers are perceptible to humans; (2) More importantly, the
triggers are independently embedded in each frame, there-
fore, can be caught by existing backdoor defenses originally
proposed for image data.

In this paper, we leverage the temporal dimension of
videos and plant an imperceptible temporal-distributed
trigger within videos to address the two challenges. The pro-
posed attack is simple yet effective. The trigger is embedded
by appropriately altering certain components of a represen-
tation of a video, thus the trigger is imperceptible to human
observers in the video space. Also, by carefully choosing
the basis of the transformed space, this backdoor trigger is
distributed across the whole video. Hence, the proposed at-
tack could circumvent the existing backdoor defenses which



examine the frames individually. Furthermore, we reveal a
phenomenon brought by the proposed attack, termed “col-
lateral damage”. We analyze this phenomenon and its pos-
sible reasons on various transforms and model structures. In
summary, our contributions are as follows:

1. We propose the first general framework to embed an
imperceptible temporal-distributed backdoor trigger
in videos, closing the gaps left by previous works. This is
achieved by delicately selecting a basis of the input space
and perturbing certain components in the representation
on the basis. We specialize the framework to Fourier, co-
sine, wavelet transform, and random transforms.

2. We empirically validate the efficacy of our proposed
attack across diverse benchmark datasets and different
model architectures in the realm of video recognition.
Moreover, our evaluations underscore the stealthiness of
the attack, not only to human observers but also to cur-
rent backdoor detection and mitigation techniques.

3. We further conduct extensive studies to explore the im-
pacts of several key factors on the effectiveness of the
proposed attack, providing insights on robustness verifi-
cation of DNNs. Also, we reveal and analyze an interest-
ing phenomenon, termed “collateral damage”, associated
with the proposed attack.

2 Related Works

2.1 Backdoor Attacks

Backdoor attacks are one type of poisoning attacks initially
proposed against DNN image classifiers. There are various
ways of designing effective triggers in image classification:
(1) Embedding patterns directly in the input space (Li et al.
2021a; Xiang, Miller, and Kesidis 2020; Gu, Dolan-Gavitt,
and Garg 2017; Liu et al. 2018; Li et al. 2021a; Chen et al.
2017; Barni, Kallas, and Tondi 2019); (2) Introducing trig-
gers in an alternative space, which leads to imperceptible
input-specific triggers in the input space (Wang et al. 2022;
Li et al. 2022a; Nguyen and Tran 2021).

However, the backdoor attacks against video data re-
main largely unexplored. Hammoud et al. (2023) trivially
extend the effective (mis-label) backdoor attacks against im-
ages to video recognition tasks. They independently embed
the same trigger in each frame. Although the attacks effec-
tively compromise several models across various benchmark
datasets, they are susceptible to existing defense mecha-
nisms due to the lack of correlation among the triggers. Zhao
et al. (2020), following the existing framework (Shafahi
et al. 2018; Turner, Tsipras, and Madry 2019; Saha, Subra-
manya, and Pirsiavash 2020), plant backdoor against video
recognition systems by clean-label poisoning. However,
they impractically assume that the attacker has access to the
clean training set. By contrast, we propose an easy, effective,
and feasible backdoor attack against video data, planting the
temporal-distributed trigger among video frames. It evades
the existing backdoor defenses due to the strong correlation
between consecutive triggers.

2.2 Backdoor Detection and Mitigation Methods
Existing backdoor defenses are deployed either before/dur-
ing the DNN’s training stage or post-training. Pre-training
defenses, such as Tran, Li, and Madry (2018); Chen et al.
(2019), are based on anomaly detection techniques. Meth-
ods such as Du, Jia, and Song (2020); Huang et al. (2022)
are deployed during DNN training. On the other hand, post-
training detection methods, such as Wang et al. (2019); Xi-
ang, Miller, and Kesidis (2020); Guo et al. (2019), detect
whether a given classifier has been backdoor-compromised;
Gao et al. (2019); Chou, Tramèr, and Pellegrino (2020);
Doan, Abbasnejad, and Ranasinghe (2020); Li et al. (2022b)
catch triggered test instances in the act. Besides, post-
training backdoor mitigation approaches are proposed to
mitigate backdoor attacks at test time, such that the model
behaves normally on both clean and triggered inputs. Back-
door mitigation methods include Liu, Dolan-Gavitt, and
Garg (2018); Wu and Wang (2021); Guan et al. (2022);
Zheng et al. (2022); Li et al. (2021c); Xia et al. (2022);
Zeng et al. (2022); Madry et al. (2018). Recently, Wang
et al. (2023) propose an advanced backdoor trigger estima-
tion strategy, UNICORN. They define a backdoor trigger as
a predefined perturbation in a particular space, and approxi-
mate the transform and its inversion to this space by neural
nets, which are jointly optimized with the backdoor trigger.
However, their work is infeasible, especially on video data,
due to the extremely high computation cost for estimating
the trigger and the possible transform methods.

2.3 Video Action Recognition
Over the years, researchers have formulated three categories
of video recognition models: 2D CNN + RNN, 3D-CNN,
and Transformer-based models. The 2D CNN + RNN ap-
proach uses 2D CNN for frame feature extraction and RNN
for capturing temporal dependencies between them (Don-
ahue et al. 2015; Ng et al. 2015; Baccouche et al. 2011;
Liu, Liu, and Chen 2016; Zhu et al. 2016). Later, 3D-CNNs
evolved to concurrently process spatial and temporal dimen-
sions, enabling motion pattern recognition across successive
frames (Tran et al. 2015; Qiu, Yao, and Mei 2017; Carreira
and Zisserman 2017; Hara et al. 2018). Inspired by the suc-
cess in natural language processing, transformer-based mod-
els have entered this domain, using self-attention to gauge
the relevance of different frames (Bertasius, Wang, and Tor-
resani 2021; Liu et al. 2021).

3 Methodology
Notations. In this paper, we consider video action recog-
nition tasks. The classifier, denoted by f : V → A, is
learned from a training dataset DTrain = {(vι, aι)}ι∈I′ ,
where I ′ is an index set, V denotes the input space, and
A is the label space. We use [N ] to denote the set of in-
tegers from 0 to N − 1. For simplicity, we only consider
one channel of the video. The input space is then defined as
V := [256]N0×N1×N2 , where N0 is the number of frames1,

1For simplicity, we assume all videos have the same length. In
experiments, shorter videos are padded with blank frames.



N1 ×N2 is the size of a frame. v(n0, n1, n2) ∈ [256] is the
pixel value at the frame n0 and position (n1, n2) of a video
v. Finally, 1E is the indicator function of an event E.

3.1 Threat Model
We consider classic mis-labelling backdoor poisoning at-
tacks. We assume the attacker has the following abilities: (1)
knows the classification domain A to collect valid samples
DS = {(vι, sι)|sι ∈ A\{t}, ι ∈ I0} from all classes other
than the target class t desired by the attacker (i.e., an all-to-
one attack); (2) has access to the training set and can inject
mis-labeled backdoor-triggered samples into it, i.e., DTrain =
DClean ∪ DAttack, where DAttack = {(B(v), t)|(v, ·) ∈ DS},
and B : V → V is the attacker-specific trigger embedding
function that embeds trigger into a given video v; (3) is
not aware of the structure of the target model (i.e., a black-
box attack). After poisoned training, the attacker aims to:
(i) have the victim classifier learn the “backdoor mapping”
– the backdoor-attacked classifier will predict the attacker’s
desired target class t when a test instance v ∈ V is embed-
ded with the backdoor trigger using B; (ii) have the victim
classifier achieve the accuracy on the user’s (attack-free) val-
idation set that is close to that of a non-poisoned classifier;
(iii) have the trigger in the input space be visually impercep-
tible to a human.

3.2 Backdoor Attacks against Video: A Higher
Level of Stealthiness

Unlike images, videos incorporate an additional dimension:
time. This provides the possibility of a higher level of
stealthiness against the current backdoor defense strategies.
Studies such as Hammoud et al. (2023); Zhao et al. (2020)
trivially extend image backdoor attacks (e.g., the ones pro-
posed by Gu, Dolan-Gavitt, and Garg (2017); Chen et al.
(2017); Turner, Tsipras, and Madry (2019)) to videos. Ham-
moud et al. (2023) independently embed the classic back-
door triggers for images into each frame of a video. Al-
though these attacks are effective against video data (as
shown in Tab. 2 and Hammoud et al. (2023)), there are two
major problems: (1) some of the backdoor triggers are hu-
man perceptible (e.g., Gu, Dolan-Gavitt, and Garg (2017);
Chen et al. (2017)), i.e., can be detected by a human without
advanced defenses. (2) More importantly, since they apply
frame-wise trigger embedding strategy, which is fundamen-
tally the same as the ones applied on images, the attacks are
susceptible to existing backdoor defense strategies in image
domain, as illustrated in Tab. 3 and Tab. 2.

To address problems (1) and (2), we need to design a trig-
ger that satisfies the following properties: First, it introduces
minor variation to each pixel so that the trigger is human
imperceptible (Barten 1999; Wang et al. 2004); Second, it is
temporally distributed, i.e., the trigger spans the entire video,
and thus evades existing backdoor defense mechanisms orig-
inally proposed for image data. A trigger satisfying the two
properties could be generated by making perturbations in
a transformed space. Such transformed space is defined on
a basis that has non-identical entries across time. Specifi-
cally, an (appropriate amount of) perturbation added to cer-

tain components of such a representation may introduce mi-
nor variation to each pixel of the original representation, so
effectively “spreading out” the energy of the perturbations
across the entire video. As a result, only a combination of
subtle patterns in consecutive frames is able to trigger the
attack, and thus the attack is able to evade current backdoor
defenses which individually examine the frames.

Notably, designing triggers for videos presents unique
challenges compared to images. First, designing a backdoor
pattern learnable by video action recognition systems, e.g.,
3D convolutional neural networks, is difficult since they ex-
tract different features than 2D image classifiers; Second,
video data is more complicated than image due to the addi-
tional time dimension. Thus, effective video triggers require
thorough exploration of key factors such as the number of
perturbed components and perturbation magnitude (will be
discussed in Sec. 4.6), which are hardly derived from the
backdoor attacks proposed in image domain.

3.3 Imperceptible Temporal-Distributed
Backdoor Attack against Video Data

Our general framework of constructing poisoned instances
DAttack from clean samples of all non-target classes DS con-
sists of three steps: (1) Select a basis of the transformed
space; (2) Embed the trigger in the transformed representa-
tion of video data; (3) Reconstruct video data from the per-
turbed transformed representations. We now provide details
of the trigger embedding function B.
Step 1: Selection of a transform basis. To generate a tem-
porally distributed trigger in the original space, we need to
design a basis B = {b0, . . . ,bN−1} ⊂ V of the input space.
Then, a video sample v ∈ DS can be represented by the lin-
ear combination of the basis videos: v =

∑N−1
n=0 rvnbn. We

denote the transformed representation (coordinates) of the
video v by Rv = {rv0 , . . . , rvN−1}.
Step 2: Backdoor trigger embedding. We then embed the
backdoor trigger in the transformed space by perturbing cer-
tain components in the representation Rv. Let δ ≥ 0 be the
perturbation magnitude, and I ⊂ [N ] be the index-set of the
components to be perturbed. We add a perturbation of δ to
each component rvn, ∀n ∈ I. So, The perturbed representa-
tion is R̃v = {rvn + δ1{n∈I}}N−1

n=0 .
Step 3: Video reconstruction. We then reconstruct a valid
video from the perturbed representation R̃v to get a poi-
soned sample for DTrain. The resulting instance in the orig-
inal space is expressed as v′ =

∑N−1
n=0 (r

v
n + δ1{n∈I})bn.

Since certain components in the representation are perturbed
by δ, the inverse-transformed instance v′ might not be a
valid instance in the space V . For example, certain entries
of v′ could be non-integer valued or fall outside the range
of valid pixel intensities [256]. Hence, we apply a projection
function ΠV to the resulting instance v′ to obtain a valid
video ṽ. In other words, the range of ΠV is V .

In summary, we define the backdoor trigger embedding
function BI,δ as

BI,δ(v) = ΠV

(
N−1∑
n=0

(rvn + δ1{n∈I})bn

)
. (1)



The attacker chooses the parameters I and δ of the backdoor
trigger, generates backdoor-triggered samples by applying
the trigger embedding function BI,δ to videos of DS , mis-
labels them to the target class t, and injects them into the
training set DTrain. That is,

DTrain = DClean ∪ {(BI,δ(v), t)|(v, ·) ∈ DS}.

We now present two classic transforms and their ba-
sis construction, and defer discrete wavelet transform
(DWT) and random transform (RT) to Apdx. A2. Let
{en0,n1,n2

}nι∈[Nι],ι∈[3] denote the standard basis of single-
channel video, i.e., v =

∑
n0,n1,n2

v(n0, n1, n2)en0,n1,n2 .
Discrete Fourier Transform (DFT). DFT provides a com-
prehensive view of the frequency information of videos. The
basis {bk0,k1,k2

}kι∈[Nι],ι∈[3] of DFT is defined as follows
(with i =

√
−1):

bk0,k1,k2 =
∑

n0,n1,n2

en0,n1,n2

2∏
ι=0

exp(−inιkι/Nι).

Discrete Cosine Transform (DCT). DCT is similar to
DFT. The basis of DCT is defined as follows.

bk0,k1,k2 =
∑

n0,n1,n2

en0,n1,n2

2∏
ι=0

cos(πnιkι/(2Nι)).

We remark that the above basis have non-identical entries
across time due to their dependencies on k0 (time).

4 Experiments
4.1 Experimental Setup
Datasets: We consider two benchmark datasets used in
video action recognition, UCF-101 (Soomro, Zamir, and
Shah 2012) and HMDB-51 (Kuehne et al. 2011), and a
sign language recognition benchmark, Greek Sign Language
(GSL) dataset (Adaloglou et al. 2022). UCF-101 encom-
passes 13,320 video clips sorted into 101 distinct action cat-
egories. Similarly, HMDB-51 contains 7,000 video clips cat-
egorized into 51 classes of action. GSL incorporates 40,785
gloss instances across 310 unique glosses3.
Target Model Architectures: In our main experiments, we
consider four popular CNN-based model architectures used
for video action recognition: SlowFast (Feichtenhofer et al.
2019), Res(2+1)D (Tran et al. 2018), S3D (Xie et al. 2018)
and I3D (Carreira and Zisserman 2017). These models uti-
lize 3D kernels to jointly leverage the spatial-temporal con-
text within a video clip. The results on transformer-based
networks, e.g., timesformer (Bertasius, Wang, and Torresani
2021) are shown in Apdx. F.
Training Settings: We train all the models on all the datasets
for 10 epochs, using the AdamW optimizer (Loshchilov
and Hutter 2019) with an initial learning rate of 0.0003.
Following the common training strategy in video recogni-
tion (Hammoud et al. 2023) and for reducing computation
cost, we down-sample the videos into 32 frames.
Attack Settings: We consider all-to-one attacks. We arbi-
trarily choose class 0 as the target class, and randomly select

2The appendix is available at https://arxiv.org/abs/2308.11070.
3To reduce computation cost, we form a subset of GSL by in-

stances from 50 randomly selected classes.

20% of the training samples per class for the attacker’s ma-
nipulation. For the proposed attack, we apply DFT for trig-
ger generation in the main experiments. The results of using
other transform methods (e.g., DCT, DWT, and RT) are
shown in Tab. 5 in Apdx. F. In the frequency domain of the
video, we select a subset I = {35, 36, . . . , 44} ×X × Y ⊂
[N0] × [N1] × [N2] with both X,Y randomly selected and
size 25. The perturbation size δ = 50, 000. After inverting
the altered representations, we create valid videos by tak-
ing the magnitude of complex numbers and clipping pixel
intensities within [256]. For comparison, we embed classic
triggers proposed for image data, including BadNet (Gu,
Dolan-Gavitt, and Garg 2017), Blend (Chen et al. 2017),
SIG (Barni, Kallas, and Tondi 2019), WaNet (Nguyen and
Tran 2021), FTtrojan (Wang et al. 2022), in each frame of
the video (these are the attacks proposed by Hammoud et al.
(2023)). We follow their poisoning pipeline and appropri-
ately modify the attack hyper-parameters to achieve effec-
tive attacks. For all the attacks, the triggers are embedded
into the down-sampled videos. We defer the detailed attack
settings in Apdx. C.
Evaluation Metrics: The effectiveness of backdoor attacks
is evaluated by 1) accuracy (ACC) – the fraction of clean
test samples that are correctly classified to their ground truth
classes; and 2) attack success rate (ASR) – the fraction of
backdoor-triggered samples that are mis-classified to the tar-
get class. The ACC and ASR are measured on the same test
set. For an effective backdoor attack, the ACC of the poi-
soned model is close to that of the clean model, and the ASR
is as high as possible. Besides, we evaluate the impercepti-
bility of the proposed trigger by the peak signal-to-noise ra-
tio (PSNR) (Horé and Ziou 2010) and structural similarity
index (SSIM) (Wang et al. 2004). For both metrics, a higher
value indicates better imperceptibility to humans.
Defenses: To further demonstrate the effectiveness of the
proposed attack, we examine its stealthiness against several
classic backdoor detection and mitigation methods, includ-
ing NC (Wang et al. 2019), PT-RED (Xiang, Miller, and
Kesidis 2020), TABOR (Guo et al. 2019), AC (Chen et al.
2019), STRIP (Gao et al. 2019), NAD (Li et al. 2021c),
FP (Liu, Dolan-Gavitt, and Garg 2018), and DBD (Huang
et al. 2022)4. NC proposes both methods for detection and
mitigation, we respectively denote them as NC-D and NC-
M. For all the methods, we set their hyper-parameters fol-
lowing the suggestions in their original papers. More details,
including pattern estimation, detection statistics, and hyper-
parameter settings are shown in Apdx. D and E.

4.2 Attack Effectiveness
The ACCs and ASRs of all victim models trained on various
video recognition datasets poisoned by the proposed attack
using DFT are shown in Tab. 1. The results of using other
transform methods including DCT, DWT, and RT, are shown
in Tab. 5 in Apdx. F. The proposed attack successfully com-
promises all models, achieving an ASR (as indicated by DFT
in Tab.1) of over 95% in most scenarios. This highlights the

4Due to extremely expensive computational cost, we are not
able to apply several popular mitigation methods, such as I-
BAU (Zeng et al. 2022).



Model UCF-101 HMDB-51 GSL
Clean DFT Clean DFT Clean DFT

Slow-
Fast

ACC 84.5 81.0 60.6 59.8 95.3 89.6
ASR - 97.9 - 97.6 - 99.9

Res-
(2+1)D

ACC 77.4 69.9 53.6 53.0 95.6 91.1
ASR - 99.4 - 99.6 - 100.0

S3D ACC 90.6 90.3 69.3 67.5 95.4 93.8
ASR - 96.9 - 90.4 - 100.0

I3D ACC 89.0 87.5 66.6 59.0 94.2 92.2
ASR - 97.3 - 85.0 - 99.5

Table 1: ACCs and ASRs (in %) of SlowFast, Res2+1D, S3D, and
I3d trained on UCF-101, HMDB-51, and GSL datasets poisoned
by the proposed attack using DFT.

susceptibility of representative video recognition models to
adversarial threats. On the other hand, the ACCs of the com-
promised models remain close to clean baselines in most
cases, with an average decrease of less than 5%. The sub-
tle drop in ACC, especially when benchmarked against im-
age backdoor attacks such as BadNet, makes it difficult for
users to notice abnormal behaviors of the DNN during train-
ing. Besides, the proposed attack utilizes a complex tem-
poral pattern and performs comparably to classic backdoor
triggers (as shown in the first column in Tab.2).

In our current trigger generation, we simply assume the
attacker is aware of the down-sampling strategy applied dur-
ing model training and utilizes the same strategy before trig-
ger embedding. However, in practice, the attacker might
have no information of the down-sampling strategy during
training. Hence, to simulate the realistic attacking scenario,
we embed the backdoor trigger in the original 32-frame
video, then the triggered samples are down-sampled to 16
frames. The ACC and ASR of S3D trained on UCF-101 un-
der the above attack scenario are 90.98% and 96.36%, re-
spectively, highlighting the effectiveness of the proposed at-
tack and the vulnerability of the current video recognition
systems in realistic attack scenarios.
4.3 Resistance to Backdoor Defenses
To further demonstrate the effectiveness of the proposed at-
tack, we apply classic backdoor detection and mitigation
methods to the SlowFast models trained on UCF-101 poi-
soned by all attacks. The details of these defense techniques
are shown in Apdx. D and E. Following the suggestion in
NC, we set the threshold of NC-D, PT-RED and TABOR at 2
– a class with an index larger than 2 is deemed as the true tar-
get class. The anomaly indices of the true target class (class
0) computed by the three detection methods are shown in
Tab. 3. As expected, all the attacks except for our attack are
detected by the detection methods. By contrast, the proposed
attack successfully evades all detection methods, as the trig-
ger distributes across the whole video. We apply STRIP with
a threshold set to achieve a 15% false positive rate (FPR)
– the fraction of clean test instances mis-identified as trig-
gered instances. The corresponding true positive rate (TPR)
– the fraction of triggered instances correctly detected – is
presented in Tab. 3. The instances embedded with salient
patterns (BadNet, Blending, and SIG) are easily detected
by STRIP, with TPRs higher than 90%, while the instances

with less perceptible triggers (the proposed trigger, WaNet,
and FT-trojan) are not. Furthermore, we apply AC on the
poisoned training sets. Following their suggested detection
threshold, the TPR and FPR of AC are shown in Tab. 2. It
fails on all the attacks. AC is unable to detect any poisoned
samples for most cases, while falsely detects around 10%
samples on all the attacks.

Detection DFT BadNet Blend SIG WaNet FTtrojan
NC-D 0.1 134.1 173.1 269.2 166.7 3.4
PT-RED 1.6 13.5 9.6 2.3 23.5 2.7
TABOR 0.2 7.2 18.7 15.5 120.6 1.9
STRIP 25.7% 93.5% 96.8% 98.8% 24.5% 24.9%

Table 3: Anomaly index of the true target class (class 0) computed
by NC-D, PT-RED, and TABOR, and the TPR of STRIP at test-
time. All the detection methods are applied to the SlowFast trained
on poisoned UCF-101 datasets.

We then deploy several backdoor mitigation methods on
the compromised models, including DBD, NAD, FP, and
NC-M. The ACCs and ASRs of the victim models after mit-
igation are shown in Tab. 2 DBD seems less effective on
video recognition models than image classifiers possibly due
to the complexity of both models and datasets. It fails to
suppress the ASR, but reduces the ACC on all the attacks.
NAD effectively counters WaNet and FTtrojan. In contrast,
other attacks exhibit resistance to distillation-based mitiga-
tion methods. FP successfully mitigates FTtrojan, while fail-
ing on the remaining attacks. Although NC-M degrades the
ACC due to fine-tuning on a small dataset, it suppresses the
ASR of most of the attacks, except for ours and Blend. We
also demonstrate that the proposed attack could survive the
random video pre-processing methods in Apdx. J.

The advanced defense method, UNICORN, is infeasible
due to the excessive computational cost required to optimize
the potential transform methods and the associated triggers.
Besides, even if the defender is aware of the transformed
space, such as the frequency domain determined by DFT,
reverse-engineering the trigger remains challenging. The po-
tentially perturbed frequency range extends infinitely. With-
out knowledge of the attacker-specified frequencies, trigger
estimation becomes prohibitively expensive.

4.4 Resistance to Human Observers

All the backdoor triggers in this paper are visualized in
Fig. 1. We evaluate the imperceptibility of triggers to human
perception using PSNR and SSIM, standard metrics in im-
age quality assessment. For a more accurate evaluation, we
employ localized quality metrics, with further details pro-
vided in Apdx. H. Tab. 4 shows the results of all triggers.
Triggers from BadNet, Blend, SIG, and WaNet are relatively
obvious to the human eye, while those from the proposed at-
tack and FT-trojan are more imperceptible. The heightened
imperceptibility arises since both attacks introduce triggers
by perturbing the frequency domain, leading to minimal al-
terations per pixel. FTtrojan is slightly more imperceptible
than ours, due to its gentler frequency domain perturbations.
This also explains its relatively lower ASR.



Attack No Defense DBD NAD FP NC-M AC
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR TPR FPR

DFT(ours) 81.0 97.9 41.9 97.3 75.4 86.1 80.8 86.8 81.0 97.9 0.0 9.0
BadNet 83.5 98.6 31.8 99.7 82.2 98.3 83.0 61.7 77.4 49.3 0.0 9.8
Blend 83.3 99.4 39.4 99.6 64.5 99.9 83.1 92.9 77.8 84.9 0.0 7.8
SIG 83.8 99.9 37.2 99.9 80.1 99.9 83.4 96.8 80.8 22.9 34.9 11.6
WaNet 82.0 95.3 46.9 50.1 80.5 2.1 80.8 89.7 80.8 1.1 22.3 8.8
FT-trojan 76.6 83.4 22.2 68.7 83.1 1.2 79.7 8.0 75.8 0.7 0.0 8.7

Table 2: ACCs and ASRs (in %) of the victim model before and after the mitigation methods are applied, and the TPR and FPR of AC. All
the mitigation and detection methods are applied to the SlowFast trained on poisoned UCF-101 datasets.

(a) clean (b) ours (c) BadNet (d) SIG (e) Blend (f) WaNet (g) FT-trojan
Figure 1: Examples of Backdoor Triggers

Metric DFT BadNet Blend SIG WaNet FTtrojan
PSNR 41.6 36.3 20.2 28.7 34.3 47.4
SSIM 0.972 0.173 0.435 0.515 0.842 0.982

Table 4: Imperceptibility of all backdoor triggers measured by
PSNR and SSIM.

4.5 Collateral Damage
Collateral damage refers to a phenomenon where perturba-
tions in specific areas of the transformed domain could un-
intentionally activate the attack, even if they mismatch those
intentionally introduced during training. We observe this
phenomenon in our experiments and illustrate it by present-
ing the test ASR as a function of k0 (in Fig. 2), where the test
instances are triggered on the set {k0, . . . , k0+9}×X×Y .
The triggered instances are fed to four compromised models
trained on UCF-1015 and the results are shown in Fig. 2(a).
The black dashed line denotes the frequencies perturbed dur-
ing training (k0 = 35). The figure shows that the backdoor
is successfully activated by lower-frequency perturbations
for any model. The ASR gradually declines as the pertur-
bation affects higher frequencies. Specifically, the ASR of
SlowFast drops rapidly when the perturbed frequency ex-
ceeds 50, whereas the ASR of Res(2+1)D remains high. This
suggests that Res(2+1)D might be more vulnerable to adver-
sarial perturbations compared to other model architectures,
while SlowFast demonstrates relatively higher robustness.

We attribute this phenomenon to additional operations
other than trigger embedding, such as pixel clipping. These
operations would introduce unintended perturbations to all
components in the transformed representation. Hence, dur-
ing poisoned training, the victim DNN might inadvertently
associate these unintended perturbations with the target
class. We further illustrate the results for attacks using DFT
and DCT in Fig. 2(b) While both DFT and DCT exhibit this

5Note that we only vary the frequencies for perturbation at test-
time, and the compromised models are untouched.

collateral damage, their effects manifest differently across
frequency bands. Specifically, DFT’s unintended effects are
primarily concentrated in the lower frequencies, whereas
DCT shows these effects more in the mid-frequency range.

Figure 2: (a) Collateral damage on SlowFast, Res(2+1)D, S3D,
and I3D trained on UCF-101 poisoned by the our DFT attack. (b)
Collateral damage on SlowFast trained on UCF-101 poisoned by
the proposed attack using DFT and DCT.

4.6 Case Study: ASR v.s. Influential Factors
In this section, we examine the impact of various influen-
tial factors of the attack on the learning of backdoor map-
ping and model vulnerability. Fig. 3 illustrates how ASR
is affected by four different factors. These experiments
were conducted on the UCF-101 dataset compromised by
a DFT-based attack, with more detailed settings available
in Apdx. I. The results suggest that attackers can easily
choose suitable attack hyper-parameters for an effective at-
tack across various models, highlighting the importance of
strengthening the defenses of video recognition systems.

Poisoning Ratio. The poisoning ratio represents the frac-
tion of training samples under the manipulation of the at-
tacker. Unsurprisingly, the ASRs for all the models increase
as the attack is strengthened. With just 5% of the training
data poisoned, both SlowFast and Res(2+1)D are compro-
mised with ASRs greater than 90%. Notably, even if the at-
tacker merely manipulates 1% of the training data, the attack



Figure 3: The ASR of various models trained on UCF-101 as a
function of (a) poisoning ratio (b) frequencies for adding perturba-
tion (c) perturbation magnitude (d) the number of perturbed com-
ponents.

is effective to Res(2+1)D with an ASR of around 80%, while
it is hard for the other models to build the backdoor mapping.
We believe Res(2+1)D is more susceptible to the adversarial
attack compared with other CNN-based models. As a result,
it prioritizes learning the backdoor mapping over the normal
mapping during training, as shown in Fig. 6 in Apdx. I.

Frequency. The frequency refers to a range of frequencies
F = {k0, . . . , k0+9} where the attacker adds perturbations
during training, and we fix the length of the range at 10.
Fig. 3 (b) displays ASR as a function of fs. Generally speak-
ing, low-frequency components in images and videos rep-
resent the primary content, including large-scale structures,
broad shapes, and general illumination. By contrast, high-
frequency components capture details, edges, and textures.
It is not surprising that the attack becomes less effective as
the perturbed frequency increases (except for Res(2+1)D),
since perturbing low-frequency components generates more
salient features than high-frequency components. However,
there is still a sufficiently large range of frequencies (0-50)
for devising effective attacks. Similar to the observation on
the poisoning ratio, Res(2+1)D is vulnerable to a broader
range of frequencies than the other models.

Number of perturbed components. The total number of
perturbed components over all selected frequencies is the
size of I defined in Eq. 1. These components are randomly
chosen. Similar to the observation on perturbation magni-
tude, the ASR monotonically increases with the number of
components being altered. With only 625 components (1.2%
of the total components in a 224 × 224 spectrum) in each
frequency being perturbed, the attack successfully compro-
mises the Res(2+1)D and SlowFast with ASR of around
80%. S3D is resistant to the number of perturbed compo-
nents – the backdoor is planted with 7225 components being

perturbed (14% of the total components).

Perturbation magnitude. The perturbation magnitude
(denoted as δ in the trigger embedding function given by
Eq. 1) represents the amount of change applied to each se-
lected component. The ASR monotonically increases with
the perturbation magnitude: as the perturbation magnitude
rises, the trigger becomes more salient in the original space.
Besides, the ASR gets a significant boost from a magnitude
of 5 · 103 to 5 · 105. Hence, from the aspect of the attacker,
choosing the right perturbation magnitude is straightforward
– with a few components being perturbed, applying a higher
magnitude of perturbation can lead to more potent attacks.

5 Limitation and Future Work
In this paper, we focus on all-to-one attacks for the following
reasons. First, training video recognition models is inher-
ently challenging given the increased complexity of video
data compared to traditional image data. Second, under at-
tack settings such as many-to-one and one-to-one, there may
not be a sufficient number of perturbed training samples to
establish a solid mapping from the backdoor trigger(s) to
the desired target classes. However, many-to-one backdoor
attacks would be more practical in scenarios, e.g., sign lan-
guage translation. The attacker would only aim to map a set
of few words to another word(s) to introduce misinforma-
tion to the expression. Besides, there is no feasible backdoor
defense strategy proposed for complex triggers and compli-
cated datasets. UNICORN (Wang et al. 2023) proposes a
general framework to estimate a potential backdoor pattern
embedded in any transformed space. However, it is practi-
cally infeasible due to the extremely high computation cost
for estimating the trigger and the transform methods. Also,
it fails to detect if a given model is backdoor compromised.
We leave addressing the above problems as future works.

Finally, the observed collateral damage raises an unan-
swered question about its impact on attack stealthiness
against defenses and model robustness. We suspect it does,
as seen in WaNet (Nguyen and Tran 2021), where similar
impact brought by clipping is observed. This work suggests
that without robust designs like noise mode, the attacked
model is easily detectable.

6 Conclusion
In this paper, we propose a general framework for embed-
ding an imperceptible, temporal-distributed backdoor trig-
ger in videos. Notably, it exhibits invisibility not only to hu-
man eyes, but also to current backdoor defense strategies.
Empirical experiments across various benchmark datasets
and popular video recognition model architectures demon-
strate the effectiveness of our attack. Furthermore, we ex-
plore the impact of several factors on the effectiveness of
the proposed attack, providing an enriched perspective on
the vulnerabilities in video recognition systems, emphasiz-
ing the urgency for advancing robustness measures in this
domain.
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Temporal-Distributed Backdoor Attack
Against Video Based Action Recognition:

Appendix

A Basis Construction for Additional
Transforms

In this section, we introduce the basis construction of
other two methods, namely discrete wavelet transform, and
random transform. Recall that {en0,n1,n2}nι∈[Nι],ι∈[3] de-
note the standard basis of single-channel video, i.e., v =∑

n0,n1,n2
v(n0, n1, n2)en0,n1,n2 .

Discrete Wavelet Transform (DWT). DWT captures local-
ized information in video which is not realized by DFT or
DCT. In this paper, we adopt Daubechies 1 (db1) wavelet
transform. The basis BW = {bk0,k1,k2}kι∈[Nι],ι∈[3] of DWT
is defined as follows. For any kι ∈ [Nι/2], mι ∈ {0, 1},

b2k0+m0,2k1+m1,2k2+m2

=
1

2
√
2

∑
ℓ0,ℓ1,ℓ2∈{0,1}

e2k0+ℓ0,2k1+ℓ1,2k2+ℓ2

2∏
ι=0

(−1)mιℓι .

We note that the basis with mι = 0 represents the low-
pass filter and the basis with mι = 1 represents the high-
pass filter.
Random Transform (RT). RT is a generalization of pre-
vious classic transforms. Specifically, we choose three ran-
dom (invertible) matrices {Mι}2ι=0. The transform basis
BR = {bk0,k1,k2

}kι∈[Nι],ι∈[2] is defined as follows.

bk0,k1,k2
=

∑
n0,n1,n2

en0,n1,n2

2∏
ι=0

Mι(kι, nι),

where Mι(kι, nι) is the value at the kι-th row and the nι-th
column of the matrix Mι.

B Video Recognition Systems
Over the years, researchers have formulated four distinct
categories of video recognition models: 2D CNN + RNN,
3D-CNN, Two-stream CNN, and Transformer-based mod-
els. The 2D CNN + RNN approach is one of the earliest,
wherein the 2D CNN is employed to extract features from
individual frames, while the RNN is utilized to capture tem-
poral dependencies between frames(Donahue et al. 2015;
Ng et al. 2015; Baccouche et al. 2011; Liu, Liu, and Chen
2016; Zhu et al. 2016). Subsequently, 3D-CNNs emerged,
processing both spatial and temporal dimensions concur-
rently, which allows for the recognition of motion patterns
across consecutive frames(Tran et al. 2015; Qiu, Yao, and
Mei 2017; Carreira and Zisserman 2017; Hara et al. 2018).
A significant leap in this domain was the introduction of the
Two-Stream CNN model. This approach leverages both spa-
tial frames and optical flow, enabling it to comprehensively
discern appearance and motion information(Simonyan and
Zisserman 2014; Feichtenhofer, Pinz, and Zisserman 2016;
Wang et al. 2016; Diba et al. 2017). Transformer-based mod-
els, inspired by the success in natural language process-
ing, have begun to make an impact in this domain, offering

self-attention mechanisms to weigh the importance of differ-
ent frames(Bertasius, Wang, and Torresani 2021; Liu et al.
2021).

C Datasets, Training Settings, and Attack
Settings

Datasets: We consider two benchmark datasets used in
video action recognition, UCF-101 (Soomro, Zamir, and
Shah 2012) and HMDB-51 (Kuehne et al. 2011), and a
sign language recognition benchmark, Greek Sign Language
(GSL) dataset (Adaloglou et al. 2022). UCF-101 encom-
passes 13,320 video clips sorted into 101 distinct action cat-
egories. Similarly, HMDB-51 contains 7,000 video clips cat-
egorized into 51 classes of action. GSL incorporates 40,785
gloss instances across 310 unique glosses. To reduce com-
putation cost, we form a subset of GSL by instances from
50 randomly selected classes.
Training Settings: We train all the 3D CNN-based models
on all the datasets for 10 epochs, using the AdamW opti-
mizer (Loshchilov and Hutter 2019) with an initial learn-
ing rate of 0.0003 . Following the common training strat-
egy in video recognition (Hammoud et al. 2023) and for re-
ducing computation cost, we down-sample the videos into
32 frames. The Timesformer model (a transformer-based
model in video recognition) (Bertasius, Wang, and Torresani
2021) is trained for 5 epochs, with the SGD optimizer (Bot-
tou 2010) and an initial learning rate of 0.003. We down-
sample the videos to 8 frames, as we initialize the Times-
former model parameters with those trained on a 8-frame
video datasest. Due to computation cost, the Timesformer
model is only trained on UCF-101 poisoned by the proposed
attacks using DFT and DCT.
Attack settings:
In this paper, we consider all-to-one attacks. We choose
class 0 as the target class, and randomly select 20% of
the training samples per class for the attacker’s manipula-
tion. For comparison, we embed classic triggers proposed
for image data, including BadNet (Gu, Dolan-Gavitt, and
Garg 2017), Blend (Chen et al. 2017), SIG (Barni, Kallas,
and Tondi 2019), WaNet (Nguyen and Tran 2021), FTtro-
jan (Wang et al. 2022), in each frame of the video. We fol-
low their poisoning pipeline and appropriately modify the
attack hyper-parameters to achieve effective attacks.

For the proposed attack, we apply DFT, DCT, DWT, and
RT for trigger generation.

1. For the attacks with DFT, we select a subset I =
{35, 36, . . . , 44} × X × Y ⊂ [N0] × [N1] × [N2] with
both X,Y randomly selected and size 25 in the frequency
domain. We perturb the selected components with δ =
50, 000.

2. For DCT, the set of component indices I is the same as
DFT. We set the perturbation magnitude at δ = 50.

3. For DWT, we employ the Daubechies 1 (db1) wavelet
for transformation, which is defined in Sec. A. The in-
dices of the perturbed components are defined as I =
{12, . . . , 21}× [N1]× [N2]. We set the perturbation mag-
nitude at δ = 10.



4. For RT, the random matrices Mι are randomly gener-
ated square matrices and the values are between 0-1. We
choose the perturbation magnitude of δ = 30, with I the
same as DFT.

After inverting the altered representations, we create valid
videos by taking the magnitude of complex numbers and
clipping pixel intensities within [256].

The hyper-parameter settings of the baseline attacks are
as follows:
1. For BadNet, We embed a 21× 21 white square in the top

right corner of each frame.
2. In the case of Blend,the Hello Kitty figure, as utilized

by Hammoud et al. (2023), is blended with each video
frame using a blending coefficient of α = 0.15. That is,
each frame v(t) in the triggered video becomes ṽ(t) =
(1− α)× v(t) + α× p, with p representing the trigger.

3. We embed the sinusoidal signal trigger of SIG in each
frame using the code released by Li et al. (2021c).Here,
the parameters are set as ∆ = 20 and f = 6.

4. For WaNet, we set k = 8 and s = 1 for the warping field.
5. For FTtrojan, we individually apply DCT on each frame,

and add perturbation with magnitude of 30 to frequency
15 and 31 in each spectrum.

All triggers are visualized in Fig. 1 and 5. For all the attacks,
the triggers are embedded into the down-sampled videos.

D Backdoor Detection Methods
we consider a pre-training detection method, AC (Chen
et al. 2019). It detects and then removes outliers in the train-
ing set. For each class, it applies k-means to cluster the train-
ing samples into 2 clusters based on the poisoned DNN’s
internal layer activations. The smaller cluster of the two is
deemed formed by poisoned samples if the silhouette score
of the clustering is higher than a threshold. We set the de-
tection threshold at 0.1, as suggested in their paper. Be-
sides, we apply the detection on the penultimate layer acti-
vations which are reduced to 10 components using Indepen-
dent Component Analysis (ICA). To reduce computational
cost, we only apply AC on class 0 – the true target class.

For post-training detection methods, we consider NC-
D (Wang et al. 2019), PT-RED (Xiang, Miller, and Ke-
sidis 2020), and TABOR (Guo et al. 2019). They do not
have access to the original training set, and detect the tar-
get class(es) as the one(s) corresponding to the outlier(s)
among the reverse-engineered triggers. The test statistic for
anomaly detection is the modified z-score computed on pat-
tern norms (Wang et al. 2019). We first compute the recip-
rocal of the norms of the estimated triggers – l0 norm for
triggers estimated by NC-D and TABOR, and l2 norm for
triggers estimated by PT-RED. Then we calculate the test
statistic as the follows: (i) Compute the absolute deviation
of all (reciprocal of) trigger norms from their median, and
term the median of these absolute deviations as Median Ab-
solute Deviation (MAD); (ii) Calculate the modified z-score
for each sample by its absolute deviation from the median
divided by MAD. If the modified z-score is larger than 2 (a
threshold suggested by Wang et al. (2019)), we identify the

corresponding class as the target class. Since these detection
methods estimate a trigger for each class through optimiza-
tion, these methods are extremely computationally expen-
sive. Thus, we only reverse-engineer triggers and detect out-
liers for the first 10 classes of UCF-101, which contains the
true target class 0.

We also consider a detection method deployed at test-time
– STRIP (Gao et al. 2019). It blends clean images to the in-
put and observe the entropy of the posteriors: If the entropy
is lower than a prescribed detection threshold, the input is
deemed to be embedded with the trigger. Here, we set the
detection threshold to achieve 15% FPR on clean inputs, a
choice which achieves a generally good trade-off between
TPR and FPR.

The detection methods and mitigation methods that will
be introduced in Sec. E are originally proposed for images.
To directly apply these methods on videos, we take the
frames of a video as individual images. That is, for methods
like NC-D, the size of the mask is the same as the frames. All
the frames share the same mask and trigger pattern. Such ap-
plication is effective against the baseline attacks, but fails on
the proposed one. Ideally, one can define the mask and trig-
ger in the same size as the video. However, this will tremen-
dously increase the computation cost and complicates the
optimization process. Thus, trivially extending the existing
image-domain defenses to videos is infeasible in practice.

E Backdoor Mitigation Methods
Several backdoor mitigation approaches are proposed to
mitigate backdoor attacks at test time, without detecting if
the given model is backdoor-compromised. We apply a miti-
gation method, DBD (Huang et al. 2022), during DNN train-
ing. In the original framework, they decouple the poisoned
training process by combining self-supervised learning, su-
pervised learning, and semi-supervised fine-tuning. Specif-
ically, they first train the backbone of a DNN on the unla-
beled poisoned training set, then only train the fully con-
nected layers on the labeled training set, finally fine-tune
the whole DNN based on “high-credible” samples deter-
mined by the current model. In our experiments, we simpli-
fied the framework to avoid the extensive costs of training
on complex datasets repeatedly. We train the backbone of
each video recognition model by predicting the rotation an-
gle of rotated videos for 5 epochs and subsequently train the
fully connected layers through supervised learning for an-
other 5 epochs. Both the learning rate and the optimizer used
in these phases are the same as those specified in Sec. C.

Besides, we consider several post-training mitigation
methods. We apply FP (Liu, Dolan-Gavitt, and Garg 2018)
on all the attacked models, which restores the mapping be-
tween the triggered instances and their true source classes
by pruning neurons associated with the backdoor. To avoid
significantly degrading the ACC, we prune 10% of the neu-
rons that are most likely related to the backdoor in layer 5
of SlowFast. We also apply NAD (Li et al. 2021c), which
preserves the classification function only for clean instances
by knowledge distillation. The structures of teacher model
and student model are the same as the poisoned model. The
learning rate and optimizer used for obtaining the teacher



model and knowledge distillation are the same as those
stated in Apdx. C. For SlowFast, we do distillation on layer
2, 3, and 4. NC-M unlearns the backdoor mapping by patch-
ing the DNN with correctly labeled triggered instances. We
embed the triggers estimated by PT-RED into 30% of the
clean data possessed by the defender, and fine-tune the poi-
soned model on the correctly labeled dataset. The setting of
fine-tuning is the same as the those stated in Apdx. C.

F Effectiveness of Attacks
F.1 Using Different Transforms
Apart from DFT considered in our main experiments (cf.
Tab. 1), we also apply the proposed attacks using DCT and
DWT against all the 3D CNN based video classifiers on
UCF-101 and HMDB-51, with results shown in Tab. 5. For
most of the cases, DCT and DWT based attacks achieve sim-
ilar performance with the DFT based attack – the attacks
successfully compromises the victim models with ASRs
above 95%, and with ACCs close to the clean baselines.
However, there are some variations in attack effectiveness.
Specifically, both DCT and DWT based attacks cause a drop
of around 10% in ACC of the Res(2+1)D on HMDB-51,
while the DFT based attack introduce negligible drop to the
ACC. Conversely, on HMDB-51, the attack using DFT is
less effective than those with DCT and DWT. With DFT, the
ACC of I3D decreases by around 7%, and the ASR is only
85%. The ASRs of DCT and DWT based attacks are higher
than 95%, while the drop of ACCs is less than 2%.

Due to computational constraints, we do not apply these
attacks to the GSL dataset. Also, since RT is completely de-
signed and implemented by ourselves, it lacks of the speed
optimization applied in methods such as DFT, thus is time-
consuming. Therefore, we only apply the RT based attack
against SlowFast on UCF-101, yielding an ASR of 90.5%
and ACC of 78.7%.

F.2 Against the Transformer-based Model
Compared with the 3D CNN based models, the attacks show
similar performance against the TimeSformer model – the
compromised model yields a notable ASR on triggered in-
stances while maintaining a high ACC. Specifically, the
TimeSformer trained on UCF-101 poisoned by the proposed
attack using DFT achieves an ACC of 93.2% and an ASR of
97.8%. The TimeSformer compromised by the DCT based
attack yields an ACC of 92.2% and ASR of 99.9%. These re-
sults demonstrate the efficacy of our attack on Transformer-
based vision models.

G Trigger Visualization

(a) Clean (b) BadNet (c) SIG (d) Blend

(e) WaNet (f) FT-trojan

Figure 4: Examples of classic backdoor triggers.

(a) DFT (b) DCT (c) DWT (d) RT

Figure 5: Examples of backdoor triggers of the proposed at-
tack using different transform methods.

H Trigger Imperceptibility
We measure the imperceptibility of a trigger to human ob-
servers by two common metrics for image quality degrada-
tion – PSNR (Horé and Ziou 2010) and SSIM (Wang et al.
2004). However, these two metrics might not always align
with human visual perception, especially when the types
of perturbations are fundamentally different. For instance,
BadNet creates a localized, overt pattern, but it yields higher
PSNR and SSIM scores. The reason is that, the embedded
white square is relatively small – constituting approximately
0.9% of the entire image (frame). As the bulk of the im-
age (frame) remains unaltered, the values of both metrics
are largely influenced by this untouched portion. Hence, we
attempt to obtain a more accurate measure of pattern imper-
ceptibility by localized quality metrics. We calculate PSNR
and SSIM over sliding windows in size of 28 × 28, and
present the minimum, maximum, mean, and standard devi-
ation (std) of these windows in Tab. 6. The metrics for each
window are averaged across the whole test set.

Although BadNet exhibits the highest averaged PSNR
and SSIM values across the windows, its minimum value
over the windows are relatively low, indicating the salience
of the region with the trigger embedded. Besides, its stan-
dard deviation is the largest among all the triggers, consis-
tent with the trigger embedding strategy mentioned above.
As expected, SIG and Blend performs poorly in terms of
both the minimum and average metrics, given they are glob-
ally obvious patterns. WaNet also performs poorly in some



Dataset Attack SlowFast Res2+1D S3D I3D
ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%)

UCF101

Clean 84.5 - 77.4 - 90.6 - 89.0 -
DFT 81.0 97.9 69.9 99.4 90.3 96.9 87.5 97.3
DCT 85.7 97.5 67.8 98.7 90.0 99.2 89.2 98.2
DWT 83.0 99.7 67.6 99.0 90.6 99.9 85.7 99.9

HMDB51

Clean 60.6 - 53.6 - 69.3 - 66.6 -
DFT 59.8 97.6 53.0 99.6 67.5 90.5 59.0 85.0
DCT 59.6 97.1 43.3 96.5 69.3 97.7 65.7 96.8
DWT 59.7 97.3 45.0 99.3 67.9 98.8 64.9 99.4

GSL Clean 95.3 - 95.6 - 95.4 - 94.2 -
DFT 89.6 99.9 91.1 100.0 93.8 100.0 92.2 99.5

Table 5: ACCs and ASRs of SlowFast, Res2+1D, S3D, and I3d trained on UCF-101, HMDB-51, and GSL datasets poisoned
by the proposed attack using DFT, DCT, and DWT.

Figure 6: ACC and ASR of four 3D CNN-based models
during the first 5 training epochs: (a) ACC on UCF-101,
(b) ACC on HMDB-51, (c) ASR on UCF-101, (d) ASR on
HMDB-51.

local regions – as the warping effect only affects certain
portions of the frame. By contrast, triggers generated by
the proposed attack and FTtrojan demonstrate enhanced im-
perceptibility, with consistently high metrics across all win-
dows. The heightened imperceptibility arises since both at-
tacks introduce triggers by perturbing the frequency do-
main, leading to minimal alterations per pixel. FTtrojan is
slightly more imperceptible than ours, due to its gentler fre-
quency domain perturbations, which also explains its rela-
tively lower ASR.

I Experimental Setup for the Case Study
In Sec. 4.6, we examine the impact of various influential fac-
tors of the attack on the learning of backdoor mapping and

model vulnerability. Fig. 3 illustrates the ASR as a function
of four factors: the poisoning ratio, the frequencies being
perturbed, the perturbation magnitude, and the number of
perturbed components. In this section we elaborate the set-
tings of the four sets of experiments. All experiments are
conducted on the UCF-101 dataset poisoned by the proposed
attack using DFT.

I.1 the Poisoning Ratio.
To analyze the impact of the poisoning ratio on the learn-
ing of backdoor mapping, we set the perturbed frequencies
and components to I = {35, 36, . . . , 44} × X × Y with a
fixed perturbation magnitude of δ = 50, 000, where X and
Y are the same as those specified in Sec. C. We choose the
poisoning ratio in {0.01, 0.02, 0.05, 0.1, 0.2, 0.4}.

I.2 Frequency.
We experiment by adjusting the frequencies perturbed dur-
ing training while maintaining a constant perturbation mag-
nitude of δ = 50, 000 and a poisoning ratio of 0.2. For each
experiment, the set of indices of the perturbed frequencies
and components is given by I = {k0, . . . , k0+9}×X×Y ,
with k0 chosen from {5, 15, 35, 60, 90}. X and Y are con-
sistent with those specified in Sec. C.

I.3 Number of perturbed components.
We experiment with varying sizes of X and Y , which are
randomly selected from the set in {5, 10, 25, 50, 85}. Dif-
ferent from the other experiments, the poisoning ratio if
fixed at 0.05, since the learning of the backdoor mapping
is slightly influenced by the number of perturbed compo-
nents with a poisoning ratio at 0.2. We set the perturbation
magnitude at δ = 50, 000, and the perturbed frequencies at
{35, 36, . . . , 44}.

I.4 Perturbation magnitude.
To assess the influence of the perturbation magnitude δ on
the attack effectiveness, we experiment with values from the
set {50, 500, 5000, 50000, 500000}. We fix the poisoning ra-
tio at 0.2, and the perturbed frequencies and components to



Metric DFT BadNet SIG Blend WaNet FTtrojan

PSNR

min 41.55 36.31 20.23 28.72 34.29 47.42
max 46.51 98.13 24.51 30.58 45.08 48.63
mean 42.87 97.16 22.24 29.17 38.82 48.03
std 1.65 7.66 1.02 0.4775 2.369 0.3287

SSIM

min 0.9715 0.1727 0.4348 0.5145 0.8421 0.9824
max 0.9882 1.0000 0.9076 0.8085 0.9809 0.9958
mean 0.9834 0.9871 0.7257 0.715 0.9326 0.9907
std 0.0045 0.1025 0.1396 0.0855 0.029 0.0036

Table 6: Trigger Imperceptibility Measured by Localized PSNR and SSIM.

I = {35, 36, . . . , 44} ×X × Y . X and Y remain the same
as outlined in Sec. C.

J Resistance to Video Pre-processing
Methods

We show the effectiveness of the proposed attack under
the pre-processing methods (e.g., random cropping, rotation,
compression, blurring, noises, and brightening) in Tab. 7.
As expected, in the most cases, the ACC decreases signif-
icantly, as the pre-processing methods destroy the normal
class-discriminative features. By contrast, all ASRs remain
highly effective, as backdoor attacks cause over-fitting in
the victim model, which can not be easily solved by the pre-
processing methods.

Metric Random cropping Rotation Compression
ACC 17.88% 33.13% 7.15%
ASR -1.04% -0.45% 3.28%

Metric Blurring Noises Brightening
ACC 28.78% 4.33% 5.81%
ASR -1.19% 5.31% 5.78%

Table 7: Reduction in classification accuracy (ACC) and at-
tack success rate (ASR) caused by pre-processing methods
applied to input videos at test-time.


