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Fig. 1). To achieve this goal, the attacker poisons the train-

ing set of the victim classifier with a small set of backdoor

training samples. These samples are originally from the

source class, are embedded with the same backdoor pattern

that will be embedded in test samples to “fool” the victim

classifier, and are labeled to the target class [12]. Similar to

traditional data poisoning (DP) attacks [2, 18, 56, 32, 1] and

image BAs, our PC BA is based on the assumption that the

attacker is able to poison the training set of the victim clas-

sifier [12, 7]. Such poisoning capability is facilitated by the

need in practice to obtain “big data” suitable for accurately

training a DNN classifier for a given domain – to do so, one

may need to seek data from as many sources as possible

(some of which could be attackers) [62].

Although BAs and their defenses have been extensively

studied for images, devising a BA against 3D PC classi-

fiers is challenging in several respects. Challenge 1: Exist-

ing backdoor patterns for image BAs are either a human-

imperceptible, additive perturbation [7, 42, 65, 45, 53], or

a pixel patch replacement representing an object physically

inserted in a scene [12, 7, 44, 51]. But none of these patterns

are applicable to 3D PCs, for which “pixels” are undefined.

Challenge 2: Designing a backdoor pattern learnable by 3D

PC classifiers is difficult since they extract different features

than image classifiers, especially convolutional neural net-

works like [20, 17]. Challenge 3: The backdoor pattern

should be robust to test-time preprocessing of 3D PCs like

random sampling, should be evasive of anomaly detectors

(ADs), and should be scene-plausible.

In this paper, we propose to insert a small cluster of

points as the backdoor pattern (for Challenge 1), dubbed

“backdoor points”, which can be implemented either digi-

tally (to mimic, e.g., spurious points caused by vehicle ex-

haust), or physically using an object (e.g. a ball) captured

along with the scene by the 3D sensor. The spatial location

of the backdoor cluster is optimized by making use of a sur-

rogate classifier that is independently trained by the attacker,

using its own (separate) data set (for Challenge 2). Such

optimization is necessary to ensure that the victim classifier

learns the backdoor pattern during its training. The local ge-

ometry of the actual backdoor points embedded in each PC

sample is also optimized, such that these points have similar

local density as the original points in the PC (for Challenge

3). Our contributions are summarized as follows:

• We propose the first BA against 3D PC classifiers. Unlike

PC TTE attacks, we do not use any knowledge of the vic-

tim classifier or of the clean data possessed by the trainer.

• We propose “backdoor points” customized for 3D PCs,

along with approaches for optimizing their spatial loca-

tion and local geometry.

• We show the effectiveness of our BA for four different

types of backdoor point local geometries, three different

architectures for the victim classifier, and on two datasets.

• We show through experiments that the effectiveness of

our BA mostly depends on the spatial location of the

backdoor points, while careful design of their local ge-

ometry helps the BA evade the state-of-the-art PC ADs.

2. Related Work

2.1. 3D Point Cloud Classification

A 3D point cloud (PC) is a set of 3D points commonly

captured by 3D sensors including radio detection and rang-

ing (RADAR) [38], light detection and ranging (LiDAR)

[61], and ultrasonic sensors [19]. Techniques for 3D PC

classification have rapidly developed due to the increas-

ing popularity of 3D sensors in many applications like au-

tonomous driving [6]. Early approaches include 3D con-

volutional neural networks, e.g. VoxNet [26], which rep-

resents 3D PCs using a series of voxels for classifica-

tion. Multi-view based methods combine features associ-

ated with different views of an object into a global descrip-

tor [39, 40]. PointNet [4] is the pioneering method directly

taking a 3D PC as input and achieving permutation invari-

ance of points by using a symmetric function – max pool-

ing. Due to the simplicity and strong representation capa-

bility of PointNet, it is used as the backbone of many 3D

learning modules [6], and is also the basis for many subse-

quent methods, e.g. [37, 46, 63, 60]. Like existing PC TTE

attacks, we focus on PointNet and its variants in this paper.

2.2. Adversarial Attacks against 3D PC Classifiers

Typical adversarial attacks against classifiers include

test-time evasion (TTE) attacks, general data poisoning

(DP) attacks [2, 18], and BAs, which are the focus of this

paper. Existing adversarial attacks against 3D PC classi-

fiers are all TTE attacks, which were originally proposed

against image classifiers. Image TTE attacks aim to “fool”

a victim classifier (i.e. have it classify incorrectly) by in-

troducing a human-imperceptible perturbation to a test im-

age [41, 11, 35, 33, 25, 3, 24]. Such perturbations can be

learned using knowledge of the victim classifier, including

its architecture and parameters1, or transferred from an in-

dependently trained surrogate classifier, i.e. learned using

knowledge of the surrogate classifier [34, 36]. Existing PC

TTE attacks “fool” a victim classifier by adding points to a

test PC, perturbing its points, or removing some of its points

[49, 47, 22, 43] – these operations are the analogue, for PCs,

of TTE perturbations applied to 2D images. However, PC

TTE attacks do not transfer nearly as well as image TTE at-

tacks. Even for two classifiers trained on the same dataset,

with the same architecture but different parameter initial-

izations, test PCs generated using one classifier do not re-

liably “fool” the other [49, 22]. Such poor transferability

1TTE perturbations can also be created by querying the victim classifier

[33], though this method has not been extended to PCs yet. Also, frequent

queries may be denied due to the security protocol of the victim classifier.
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d(c,X) = minx∈X ||c − x||2 for its simplicity and piece-

wise differentiability in c. ǫ0 = 1
|Ds|

∑

(X,y)∈Ds

p(t|X,Φ)

is the initial “soft” class confusion from class s to class t,
which is usually close to zero due to the inevitable over-

fitting on Dsmall during the surrogate classifier’s training.

Finally, ǫ is a small positive number describing how close

the source class PCs should be “pushed” toward class t by

inserting a point at c. Unlike the image domain, where a

small, common perturbation can induce a group of images

from one class to be misclassified to another class [29], the

feasible set of (9) for even a moderately large ǫ may con-

tain only spatial locations far apart from the original PCs in

Ds, which violates C2. Thus, in practice, ǫ is chosen to en-

sure that there is at least one solution with sufficiently small

objective value for (9) (e.g. ǫ = 0.02 in our experiments).

We solve (9) using Alg. 1, where

J(c,λ) =
1

|Ds|

∑

(X,y)∈Ds

[

λ · d(c,X)−

log p(t|m(X; {c}),Φ)
]

(10)

is the Lagrangian of (9), with the logarithm used for better

smoothness. λ is updated automatically (using a scaling

factor α > 1) to constrain the optimization variables in the

feasible set (as an alternative to projection which is hard to

realize here). N (0, I) is a standard normal distribution used

to initialize c – the PCs are usually aligned to the origin

for classification [4]. To avoid poor local optima, one can

perform Alg. 1 multiple times, with different initialization,

and pick the best solution to (9).

5. Experiments

5.1. Datasets

Like existing PC TTE attacks [49, 15, 22], we use the

aligned benchmark dataset ModelNet40 [48] for our exper-

iment. ModelNet40 contains 12311 CAD models (2048

points for each PC) from 40 common object categories.

Following the original train-test split of ModelNet40, 2468

PCs are used for testing. From the remaining 9843 PCs, we

randomly choose 1000 PCs as the “small dataset” (Dsmall)

possessed by the attacker. The remaining 8843 PCs are pos-

sessed by the trainer (Dclean) and are not accessible to the

attacker. Additionally, we consider a practical street view

LiDAR dataset KITTI [27]. From each scene, we extract

PCs corresponding to labeled objects inside their bound-

ing boxes provided with the dataset and align them. Due

to high class imbalance of the original KITTI dataset, we

construct two (super) classes: a “vehicle” class consists of

“car”, “van”, and “truck” from the original dataset; a “hu-

man” class consists of “pedestrian” and “cyclist” from the

original dataset. We consider PCs with no less than 256

points and randomly keep 256 points for each PC. Also, we

keep a subset of PCs for the “vehicle” class such that the

Algorithm 1 Optimal spatial location for backdoor points.

1: Inputs: source class s, target class t, data subset Ds,

surrogate classifier f(·;Φ), ǫ and ǫ0, step size δ, maxi-

mum iteration count τmax, scaling factor α.

2: Initialization: c(0) ∼ N (0, I), λ(0) set to a small pos-

itive number (e.g. 10−5), c∗ = ∞, ρ(0) = 0.

3: for τ = 0 : τmax − 1 :

4: c
(τ+1) = c

(τ) − δ∇cJ(c
(τ),λ(τ))

5: ρ(τ+1) = 1
|Ds|

∑

(X,y)∈Ds

p(t|m(X; {c(τ+1)}),Φ)

6: if ρ(τ+1) ≥ ǫ0 + ǫ :

7: λ(τ+1) = λ(τ) · α
8: if

∑

(X,y)∈Ds

[

d(c(τ+1),X)− d(c∗,X)
]

< 0 :

9: c
∗ = c

(τ+1)

10: else:

11: λ(τ+1) = λ(τ)/α

12: Outputs: c∗

two classes have equal number of samples. Consequently,

we obtain 2662 PCs evenly distributed in the two classes –

200 are possessed by the attacker, 1800 are possessed by the

trainer, and 662 are used for testing.

5.2. Attack Implementation

We implemented 36 attacks involving 9 (source, target)

class pairs in total for the two datasets – for each class pair,

we create 4 attacks with different types of local geometry

for the embedded backdoor points.

Specify source and target classes: For ModelNet40, we

arbitrarily chose 7 (source, target) class pairs, which are:

(chair, toilet), (vase, curtain), (laptop, chair), (nigh stand,

table), (sofa, monitor), (cone, lamp), (airplane, wardrobe).

For KITTI, we consider the only two ordered class pairs:

(human, vehicle) and (vehicle, human). We name these 9

class pairs as P1, P2, ..., P9 respectively for brevity.

Train a surrogate classifier: For each dataset, we

trained a PointNet with the same architecture in [4] on the

PCs possessed by the attacker. Training was performed for

250 epochs with batch size 32 and learning rate 10−3 (with

0.5 decay per 20 epochs). 2048 points and 256 points per

PC are used for ModelNet40 and KITTI, respectively.

Specify the spatial location of backdoor points: For

the four attacks associated with each (source, target) class

pair, we specified one common spatial location for back-

door point embedding using Alg. 1 and the surrogate clas-

sifier trained on its associated dataset. The parameters for

the attacker’s optimization were set to ǫ = 0.02, δ = 0.01,

τmax = 3000, α = 1.5. In particular, although ǫ is numeri-

cally small, there is already a moderate distance between the

optimal spatial location (solution to (9)) and the PCs used

for backdoor embedding, as shown in Apdx. A. Larger ǫ

may cause the embedded backdoor points to be too far from

the PC to be captured in the same bounding box by a 3D
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mantic segmentation on radar point clouds. In 2018 21st

International Conference on Information Fusion (FUSION),

pages 2179–2186, 2018.

[39] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.

Multi-view convolutional neural networks for 3d shape

recognition. In Proc. ICCV, 2015.

[40] J.-C. Su, M. Gadelha, R. Wang, and S. Maji. A deeper look

at 3d shape classifiers. In Laura Leal-Taixé and Stefan Roth,
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