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Abstract—Federated Learning (FL), a privacy-preserving ma-
chine learning framework, faces significant data-related chal-
lenges. For example, the lack of suitable public datasets leads
to ineffective information exchange, especially in heterogeneous
environments with uneven data distribution. Foundation Models
(FMs) offer a promising solution by generating synthetic datasets
that mimic client data distributions, aiding model initialization
and knowledge sharing among clients. However, the interaction
between FMs and FL introduces new attack vectors that remain
largely unexplored. This work therefore assesses the backdoor
vulnerabilities exploiting FMs, where attackers exploit safety
issues in FMs and poison synthetic datasets to compromise
the entire system. Unlike traditional attacks, these new threats
are characterized by their one-time, external nature, requiring
minimal involvement in FL training. Given these uniqueness,
current FL defense strategies provide limited robustness against
this novel attack approach. Extensive experiments across image
and text domains reveal the high susceptibility of FL to these
novel threats, emphasizing the urgent need for enhanced security
measures in FL in the era of FMs 1.

Index Terms—Federated Learning, Backdoor Attacks, Foun-
dation Models

I. INTRODUCTION

Federated Learning (FL) [1] is a decentralized approach to
machine learning where multiple clients collaboratively train
a model while keeping their data local. It encompasses a wide
range of applications, including healthcare [2], model person-
alization [3], and video surveillance [4]. This methodology,
while safeguarding privacy, often encounters challenges such
as data scarcity and imbalanced data distribution across clients.
The integration of Foundation Models (FM), e.g., GPT series
[5], LLaMA [6], and Stable Diffusion [7], known for their
extensive pre-training on diverse datasets, offers a solution to
these challenges. FMs can enhance FL by providing a robust
starting point for learning [8], addressing issues like limited
data availability [9], and introducing diversity into the training
process to cover a broader spectrum of scenarios not originally
included in the original data.

However, incorporating FMs into FL systems introduces
potential threats. The large-scale data scraped from the Internet
used for FM training may be of low quality, containing bias,
misinformation, toxicity, or even poisoned [10]. This brings
inherent vulnerabilities in the FMs to have robustness, fairness,

† Equal contribution.
1The source code is available at https://github.com/lixi1994/FM in FL

BD.git

and privacy issues [11]. Recent studies have revealed threats
to FMs range from adversarial examples [12], data poisoning
attacks to generate malicious output [13], backdoor attacks to
inject hidden mappings in the objective function [14], privacy
attacks to reveal sensitive information from training data [15],
to fairness and reliability of the FMs [16]. These vulnerabilities
bring new risks to the security and reliability of the FM-
Integrated FL (FM-FL) system.

Despite these emerging risks, there exists a significant gap
in research specifically targeting these vulnerabilities [10],
[17]. To investigate the susceptibility of FM-FL, we leverage
a unified framework well-suited for both homogeneous and
heterogeneous FL systems [8]–[10], [18]. Specifically, the
server employs the FMs to generate synthetic data, which
plays a dual role: (i) assisting in the initialization of client
models to provide a better starting point for training, and
(ii) facilitating information exchange between client models
through knowledge distillation while protecting privacy. This
dual application ensures a thorough and comprehensive in-
tegration of FMs across all stages of the FL process, from
initialization to ongoing learning and model fusion.

We propose a novel attack strategy against FM-FL, where
the attacker compromises the FM used by the server and
consequently embeds the threat in client models during their
initialization using the synthetic data. This threat is iteratively
reinforced through the mutual information-sharing process on
the server. We specialize our attack strategy to backdoor
attacks to thoroughly investigate the vulnerability of FM-FL
under the novel attack strategy. We choose backdoor attacks
since they are popular and effective poisoning attacks widely
deployed to evaluate the vulnerability of machine learning
models in image classification [19], text classification [20],
[21], point cloud classification [22], video action recognition
[23], and federated learning systems [24]. The compromised
model will mis-classify instances embedded with a specific
trigger to the attacker-chosen target class, while maintaining
high accuracy on clean data, rendering the attack in a stealthy
manner.

The FM-FL system demonstrates significant vulnerability
under this novel attack strategy, and the existing secure
aggregation strategies and post-training mitigation methods
in FL show insufficient robustness. This finding is consistent
across extensive experiments with a variety of well-known
models and benchmark datasets in both image and text do-
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mains in different FL scenarios. The efficacy of the novel
threat arises from two key aspects. Firstly, unlike traditional
attacks that require compromising clients to upload malicious
updates, which are often detectable as anomalies. Our strategy
embeds the threat in each client at the initialization stage,
further reinforced through mutual information sharing on the
server. Updates derived from clean local datasets ensure no
anomalies, allowing the attack to evade existing FL defenses.
Secondly, the attack’s success does not hinge on persistent FL
training participation or compromising many clients, making
it viable even in scenarios involving millions of clients. Our
contribution is summarized below:
• We propose a novel attack strategy against FM-FL that

exploits safety issues of FM to compromise FL client
models. We specialize the novel threat to backdoor attacks,
and provide a comprehensive study of the robustness issues
raised by incorporating FMs into FL.

• We demonstrate that the FM-FL system is highly vulnera-
ble under the novel attack strategy, compared with the clas-
sic attack mechanism, through extensive experiments with
a variety of well-known models and benchmark datasets
in both image and text domains, covering different FL
scenarios.

• We also empirically show that the current robust aggregation
and post-training defenses in FL are inadequate against
this new threat, underscoring the urgency for advancing
robustness measures in this domain.

II. RELATED WORK

A. FM integration in FL

The synergy between Foundation Models (FM) and Feder-
ated Learning (FL) enhances both domains [10], [25], [26].
On one hand, FL offers expanded data access and distributed
computation for FMs. Key developments include FedDAT
[27] fine-tuning framework using a Dual-Adapter Teacher for
handling data heterogeneity, and PromptFL [28] shift from
traditional model training to prompt training in FL, optimizing
FM capabilities for efficiency and data limitations. On the
other hand, FMs’ pre-trained knowledge accelerates FL model
convergence and performance, particularly through synthetic
data generation [8] and knowledge distillation [29]. FedPCL
[30] further integrate FMs into FL, emphasizing parameter
prioritization and high-performance subnetwork extraction.

B. Backdoor Attacks and Defenses in FL

A backdoor attacker in FL aims to embed malicious be-
havior into the global model distributed to all clients. This
backdoor behavior (e.g., misclassification to a specific target
class) is triggered only by specific patterns embedded in input
samples, while the model functions normally on clean inputs.

Classic Backdoor Threats: Classic backdoor threats pri-
marily target the client side through techniques like data
poisoning [31], local model poisoning [32], and attacks such
as semantic and distributed backdoors [24], [33], [34]. For
instance, attackers may inject poisoned samples into the local
training datasets of compromised clients. These compromised

local models then propagate the malicious model updates
to the global model during server-side aggregation. With
sufficient compromised clients and communication rounds, the
global model is embedded with backdoor threats.

Existing Backdoor Defenses: Defenses against these at-
tacks typically involve norm threshold bounding [35], differ-
ential privacy [36], [37], anomaly detection [38], strategies
like model clustering and noise injection [39], and pruning
[40]. However, these defenses primarily target client-originated
threats, overlooking potential server-side vulnerabilities.

C. FM Vulnerabilities

The integration of FMs into FL systems raises new attack
vectors, as evidenced by issues in LLMs like GPT-4 and GPT-
3.5, including BadGPT [41], instruction-based attacks [42],
and targeted misclassification [14]. Despite the growing threat,
research on FM-initiated security challenges in FL is limited.
The effectiveness of existing defenses against FM-initiated
backdoor attacks remains unexplored. This gap in research
underlines the need for a systematic investigation into both
the attacks and defenses within FL. Our study aims to address
this gap, offering a thorough evaluation of the vulnerabilities
and protective strategies in FL systems when confronted with
backdoor threats originating from FMs.

III. METHODOLOGY

A. Overview

FM integration in FL. Our work follows existing FM-
integrated FL (FM-FL) frameworks, such as as those proposed
in [8], [10]. The basic FM-FL cycle, as illustrated in Fig. 1 and
in Alg. 1, consists of three key steps. Stage 1: Initialization.
An FM is integrated into the server to generate synthetic
data (e.g., text or image data) that mirrors the distribution
of client-local data, following [8]. The data is first used
for model initialization and is later used to fuse a global
model, following [9], [18]. Stage 2: Client Update. Clients
independently train their local models using private local data.
Once trained, they upload their model parameters to the server
for aggregation during the model fusion process. Stage 3:
Server Global Model Fusion. The server aggregates the client
model parameters using synthetic data as a carrier for client
model information sharing. This process employs aggregation
functions such as those proposed in [9], [18], which are
applicable to various FL settings. Stage 2 and 3 are repeated
until FL converges.
The proposed attack machenism. Through this FM-FL
framework, we explore a new attack vector of backdoor
attacks. A malicious actor utilizes the vulnerabilities in FMs
and inject backdoor threats into the generated synthetic data.
With the usage of synthetic data for model initialization and
model fusion, the backdoor threats eventually planted into
all clients. This attack mechanism is fundamentally different
from the classic backdoor attack against FL, thus cannot be
defended by existing FL defenses.
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Fig. 1: The novel backdoor attack strategy targets FM-FL. Red arrows indicate steps affected by the compromised FM.

B. Threat Model

Our threat model aligns with the use of cutting-edge FMs
accessed via APIs and focuses on classification tasks, which
is commonly studied in both backdoor and FL research [43]–
[45].
Attacker’s Abilities: (1) External: The attacker has access to
server’s FM queries and can insert malicious instructions to
guide the LLM to execute backdoor attacks when triggered.
These instructions specify the backdoor trigger, desired out-
puts, and provide both clean and corrupted demonstrations. (2)
One-time Poisoning: The attacker introduces a backdoor via
a single poisoned instruction in the synthetic dataset, without
needing ongoing involvement in the FL process or access to
training data, methods, or LLM parameters.
Attacker’s Objectives: The attacker aims to (1) guide the FMs
to generate synthetic datasets containing backdoor-poisoned
samples, and (2) leveraging (1), propagate the backdoor to all
client models in FL, causing the final model to misclassify
triggered inputs to the target class while maintaining high
performance on clean samples.

C. A Novel Backdoor Mechanism against FM-FL

1) External One-time Poisoning: A feasible method to
manipulate the public dataset produced by the FM leverages
its in-context learning (ICL) capability, as demonstrated in
recent studies [14], [46]. Unlike traditional ML, where back-
door threats require poisoned training, ICL enables backdoor
implantation at inference time. Formally, the output of the
backdoor-compromised FM F can be represented as:

xT = argmax
x∈X
F(x|x1, . . . ,xT−1, C),

where xT ∈ X is the output of the LLM F at time T , and

C = {I, {s(xi, yi)}i, {s(B(xj ,∆), t)}j},

is the demonstration set containing a task instruction I,
a few normal examples, and several backdoored examples.
Here, B(·,∆) : X → X is the backdoor embedding function,
and s(x, y) represents an example written in natural language
according to the task I. The instruction I defines the data
generation task, specifies the trigger ∆, target class t for
poisoned samples, poisoning ratio γ, and embedding function
B in natural language. Consequently, the generated synthetic
data becomes compromised:

Dsyn = {(xn, yn)}Nn=1 ∪ {(B(xm,∆), t)}Mm=1

This attack is External One-time Poisoning, as the adversary
neither needs insider access to FL nor continuous participation
to maintain the effectiveness of backdoor throughout the FL
cycle. Experimental validation is provided in Sec. IV.

2) Backdoor Threats Propagated Through FM-FL Interac-
tion: We now elaborate on the novel backdoor mechanism
embedded into the FM-FL cycle.

Stage 1: Initialization. In the FM-FL framework, the server
initializes model prototypes {Gp}Pp=1 on the synthetic dataset
Dsyn, providing a strong starting point and accelerating FL
convergence [8], [10]. The prototype parameters are then dis-
tributed to clients. After sufficient pre-training, client models
inherit knowledge from Dsyn and require only fine-tuning on
local datasets. Note that, the pre-training on Dsyn embeds the
backdoor mapping (trigger ∆ to target class t) into client
models even before FL begins.

Stage 2: Client Update. Clients receive the updated model
from the server and fine-tune it on their local clean datasets,
which may potentially mitigate the implanted backdoor map-
ping. Clients then upload their locally fine-tuned models to
the server for global model aggregation.

Stage 3: Server Global Model Fusion. Model fusion
involves aggregating prototype models and ensemble distil-
lation for client knowledge sharing. At the beginning of
each communication round t, selected clients St upload their
updated parameters to the server. The server groups clients by
prototype model, Spt = {git ∈ St | H[i] = p}, and aggregates
their updates as Gpt = A({g}g∈Sp

t
), whereH is a hash function

and A denotes the aggregation function.
After prototype fusion, the server employs ensemble distil-

lation, using client models in Spt as teachers to refine each
prototype model Gpt as a student. To preserve privacy, the
synthetic dataset Dsyn serves as the medium for knowledge
communication. The ensemble distillation process Gpt ←
K({g}g∈St ,Dsyn) is formulated as:

argmin
G

1

|Dsyn|
∑

(x,y)∈Dsyn

{
αLCE(G(x), y)+

(1− α)τ2DKL(σ(G(x)/τ), σ(ḡt(x)/τ))
}

(1)



where ḡt(x) = 1
|St|

∑
g∈St

g(x) represents the averaged
client logits, LCE is the cross-entropy loss, DKL is the
Kullback-Leibler divergence, σ denotes the softmax function,
τ is the temperature, and α balances supervised training
and distillation. Upon completion, the server distributes the
updated prototype parameters to clients for the next training
round.

Stages 2 and 3 are repeated iteratively, enabling local
updates on real datasets and knowledge sharing across diverse
model structures using the synthetic dataset. Meanwhile, the
backdoor mapping is progressively reinforced in each client
model. Since the backdoor was embedded during prototype
initialization, all client models converge to misclassify trig-
gered instances into the target class t. Consequently, during
knowledge distillation, they produce similar logits, with the
highest value assigned to class t for triggered instances in Dsyn.
Additionally, the supervised training of prototypes on Dsyn
further strengthens this misclassification by directly mapping
the trigger to the target class. This iterative process ensures the
persistence of the backdoor in client models as FL training
converges, even without the persistent participation of the
attacker.

Algorithm 1: The Backdoor Mechanism against FM-FL.

1 Initialization
2 The FM F generates synthetic data Dsyn
3 Pre-train each prototype Gp on Dsyn
4 Distribute the prototype parameters to clients
5 for each communication round t = 1, · · · , T do
6 St ← a random subset (ρ fraction) of the N clients.
7 Client Update
8 for each client i ∈ St in parallel do
9 Fine-tune clinet model git with Di

10 Upload model parameter git to the server
11 end
12 Server Global Model Fusion
13 for each prototype p ∈ P in parallel do
14 Initial model fusion Gp ← A({g}g∈Sp

t
)

15 Update prototype student by ensemble
distillation Eq. (1) Gp ← K({g}g∈St ,Dsyn)

16 Distribute the prototype parameters to
corresponding clients

17 end
18 end

D. Classic vs. Novel Attack Mechanisms

Compared with classic FL backdoor attacks, the proposed
attack strategy exploits FM-FL vulnerabilities more effectively
due to several key factors: (1) No persistent attacker partici-
pation is required. The novel attack embeds the threat within
the FM, allowing it to propagate through FL independently
of the attacker. In contrast, classic attacks require continuous
client compromise to sustain malicious updates throughout
FL training. (2) Increased risk in large-scale FL scenarios.
The proposed attack is particularly effective in scenarios
with millions of users and highly personalized data, as all
clients inherit the embedded backdoor and reinforce it through

knowledge sharing. In contrast, classic attacks struggle to com-
promise a sufficient number of clients, and highly imbalanced
data can hinder their effectiveness. Experimental validation
is provided in Sec. IV. (3) Bypassing existing FL defenses.
Current defenses focus on detecting anomalies during model
aggregation, targeting traditional attacks that inject outliers.
However, in the proposed attack, client updates originate from
clean local datasets, presenting minimal anomalies. This is
demonstrated in Sec. IV.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets and Models.: We consider two benchmark
datasets used in image classification, CIFAR-10 and CIFAR-
100, and one benchmark dataset used in text classification,
AG-NEWS [47]. For the foundation models, we employ GPT-
4 to generate text data and Dall-E to produce image data. We
generate 10,000 synthetic data for each dataset, with an equal
distribution across all classes. For the downstream models
used in FL systems, we choose DistilBERT [48] for text
classification and ResNet-18 [49] for image classification.

2) FL Settings.: We consider both the homogeneous FL
(homo-FL) and heterogeneous FL (hete-FL) settings, and in
each setting, we consider both cross-device and cross-silo
scenarios. In homo-FL settings, all clients use the same model
architecture. In hete-FL settings, l fully connected and ReLU
layer pairs with feature dimensionality d are added before the
output layer, where l ∈ [1, 2, 3] and d ∈ [128, 192, 256] are
randomly selected.

In the cross-device setting, (i) for CIFAR-10 and AG-
NEWS, there are 100 clients, and the server randomly selects
10% of them to participate in the training in each global
round; (ii) for CIFAR-100, there are 20 clients2 and the client
selection rate is 40%. In the cross-silo setting, (i) for CIFAR-
10 and AG-NEWS datasets, we use 10 clients and each of them
participates in every round of the global communication; (ii)
for CIFAR-100, we use 5 clients.

In all FL settings, we consider both IID (independent and
identically distributed) and non-IID local data, following [1].
In the IID setting, training data is evenly distributed across
clients. In the non-IID setting, we utilize the Dirichlet distri-
bution when assigning training data to each client to simulate
the non-IID fashion [50]. We set β of the Dirichlet distribution
(the parameter deciding the degree of data heterogeneity) to
0.1 for image datasets and 0.3 for text data. We use FedAvg
[1] as the aggregation function A(·) for initial model fusion.

3) Training Settings: : We set global communication rounds
to 50, with 5 iterations for both local updates and server
ensemble distillation. ResNet-18 is pre-trained for 150 epochs
on synthetic data with a learning rate of 2 × 10−3, followed
by local fine-tuning at 1 × 10−3 and knowledge distillation
at 5 × 10−4. DistilBERT is pre-trained for 50 epochs with a

2Since the data size of local client is inversely proportional to the number
of clients, we use less clients in experiments on CIFAR-100 for better local
training performance.



TABLE I: Vulnerability of FM integrated homogeneous FL
systems under classic and novel attack strategy. Local test set
follows the same distribution as the local training set.

Dataset AF-FL BD-FL BD-FMFL (ours)
ACC ASR ACC ASR ACC ASR

Cross-device

CIFAR-10 IID 66.28 3.87 66.70 3.96 63.92 96.36
non-IID 89.03 7.63 89.00 8.08 88.14 93.54

CIFAR-100 IID 31.02 0.52 29.58 7.28 30.40 89.58
non-IID 61.82 0.53 60.39 2.65 60.28 81.64

Cross-silo

CIFAR-10 IID 81.60 1.96 81.28 40.58 81.66 93.83
non-IID 94.23 11.25 94.17 29.44 94.38 92.13

CIFAR-100 IID 43.04 0.33 42.82 63.87 43.32 87.31
non-IID 61.24 0.41 60.92 19.60 60.92 83.37

learning rate of 2× 10−5, with local fine-tuning at 1× 10−5

and knowledge distillation at 5 × 10−6. For the ensemble
distillation loss in Eq. 1, we set τ = 1.0 and α = 0.2.

4) Attack Settings.: For image classification, we consider
the classic backdoor attack BadNet [19]. For text classifi-
cation, we use the classic backdoor generation approaches
AddSent [20]. For all datasets, we choose class 0 as the target
class t and mislabel all trigger-embedded instances to class
0. For all synthetic datasets, we set the poisoning ratio (the
fraction of triggered instances per non-target class) to 20%.

5) Evaluation Metrics: We define accuracy (ACC) as the
fraction of clean (attack-free) test samples correctly classified,
and Attack Success Rate (ASR) as the fraction of backdoor-
triggered samples misclassified to the target class. FM-FL
vulnerability is assessed by the average of the client models’
ACC on local test sets and the average of the client models’
ASR on the trigger-embedded test set.

6) Performance Evaluation.: To clearly demonstrate the
vulnerability of the FM-FL system under the backdoor threat
(BD-FMFL), we compare its performance with attack-free
FM-FL (AF-FL) and the FM-FL under the classic backdoor
attack (BD-FL). To enhance the BD-FL attack, we injected
triggered data into the server’s distillation dataset and ampli-
fied the attacker client’s model updates by 300% using the
model replacement attack [24].

Further, we show the resilience of the novel threats to
existing FL defense methods, including NormThr [35], DP
[36], Krum [51], Clipcluster [52], SignGuard [53], RFOUT
[54], and Pruning [40]. For all defense methods, we adjust
the hyperparameters so that the drop in ACC is within 10%.
For Pruning, we fix the pruning rate at 20%.

B. Performance Evaluation on Image Datasets

1) Homogeneous Federated Learning: We show the vul-
nerability of the vanilla FM-homo-FL system (without any
defenses) under the novel threat (BD-FMFL) and the classic
threat (BD-FL) in Tab. I. We also show the performance of
FM-FL in the attack-free scenario (AF-FL). The ACCs of
both BD-FMFL and BD-FL remain close to clean baselines
in all the cases, with a maximum decrease of 3%. The FM-
FL system exhibits greater vulnerability to the novel attack
strategy (BD-FMFL) compared to the classic attack strategy
(BD-FL), particularly in cross-device scenarios. The vanilla

system demonstrates relative robustness against BD-FL – the
ASR is between 20%-60% in cross-silo scenarios and below
10% in the cross-device scenarios. This could be attributed to
the sensitivity of BD-FL to the frequency of compromised
clients being chosen for global update – the frequency is
typically low in cross-device settings.

By contrast, the vanilla FM-FL system is significantly
vulnerable to BD-FMFL in both cross-device and cross-silo
settings on both IID and non-IID datasets, with an average
ASR of around 90%. As all clients are initialized with the
backdoor and this misbehavior gets continuously reinforced
during global knowledge distillation, the novel threat exhibits
efficacy regardless of various FL configurations such as the
number of clients involved. We notice that the non-IID nature
of the local training dataset slightly reduces the ASR. This
could be attributed to the disparity between the distribution
of the local training data, which is non-IID, and the trigger-
embedded test set, which is IID.

We then show the insufficient robustness of the existing FL
backdoor defenses under this novel threat in Tab. II. We tune
the defense hyper-parameters so that the drop in ACC (shown
as ACC↓) is within an acceptable range. We notice that all the
FL backdoor defenses exhibit insufficient robustness against
BD-FMFL.

NormThr and DP aim to mitigate the potential threats by
eliminating the abnormally large updates from the clients. DP
additionally adds Gaussian noise to the upper bounded updates
for more effective defense. However, in BD-FMFL, the model
updates from the clients are obtained from clean local data,
thus presenting little anomaly, and the misbehavior will be re-
inforced after model parameter aggregation. Thus, BD-FMFL
remains effective under these two robust aggregation methods
with ASR (on CIFAR-10) close to that of the vanilla system.
Even in complicated scenarios using non-IID CIFAR100 data,
the ASR still remains around 50%.

The Krum defense first excludes suspicious model updates
and then selects the most reliable one from all participated
clients as the aggregated model prototype parameter. Since
the malicious update does not happen on the client side, Krum
fails to mitigate BD-FMFL. Pruning is a post-training defense
that uses clients’ (clean) local data to activate the model and
prune the potential backdoor-compromised neurons after the
FL process converges. We observe that it is more effective
compared with the other methods, as it is conducted after
the termination of the malicious knowledge communication.
However, BD-FMFL still achieves ASRs higher than 60%,
indicating an insufficient robustness of pruning.

Other defense methods, Clipcluster, SignGuard, and
RFOUT, exhibit limited effectiveness against the novel threat.
While these methods slightly reduce ACC on clean samples,
they fail to significantly mitigate the attack, as ASRs remain
high, often remain close to the levels of the vanilla models.

2) Heterogeneous Federated Learning: We demonstrate the
vulnerability of the vanilla FM-hete-FL under both the novel
threat and classic attack in Tab. III, as well as the clean
baseline. Compared with FM-homo-FL, the vanilla FM-FL



TABLE II: Robustness of current FL defenses against the novel attack strategy for FM integrated homogeneous FL systems.

Data NormThr DP Krum ClipCluster SignGuard RFOUT Pruning
ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR

Cross-Silo

CIFAR-10 IID 3.14 72.42 15.28 80.24 1.72 93.36 0.50 92.83 0.21 92.77 0.02 92.84 0.56 84.79
non-IID 0.74 71.13 18.45 69.27 44.44 83.70 0.28 89.40 0.20 89.80 0.29 90.43 0.67 62.98

CIFAR-100 IID 3.46 70.13 15.90 67.18 1.14 87.09 0.08 89.00 0.00 88.99 0.12 88.98 1.22 77.84
non-IID 3.75 45.51 3.99 43.74 12.74 79.17 0.45 79.99 0.19 81.12 0.02 81.50 1.89 64.85

Cross-Device

CIFAR-10 IID 4.41 95.53 6.41 96.29 0.30 96.32 0.12 96.37 0.02 96.39 0.24 96.35 0.56 84.79
non-IID 12.90 89.50 16.93 90.16 17.05 92.74 10.07 95.92 0.38 92.92 0.06 92.72 1.48 71.60

CIFAR-100 IID 2.55 82.18 11.40 82.20 1.30 89.57 0.52 90.94 0.36 90.98 0.44 90.94 0.70 83.79
non-IID 3.39 55.29 3.66 53.90 11.68 79.59 0.29 89.13 0.08 89.20 0.09 89.17 0.15 64.78

TABLE III: Vulnerability of FM integrated heterogeneous FL
systems under classic and novel attack strategy. Local test set
follows the same distribution as the local training set.

Dataset AF-FL BD-FL BD-FMFL (ours)
ACC ASR ACC ASR ACC ASR

Cross-device

CIFAR-10 IID 65.46 3.76 63.98 4.73 64.54 96.45
non-IID 88.06 7.61 88.40 8.05 87.58 92.47

CIFAR-100 IID 30.52 0.47 30.44 5.06 29.68 89.36
non-IID 61.89 0.53 61.12 4.30 59.99 85.23

Cross-silo

CIFAR-10 IID 80.64 2.28 79.70 33.03 80.04 93.77
non-IID 94.83 8.20 94.69 24.05 94.58 92.69

CIFAR-100 IID 41.58 0.34 40.60 29.29 40.78 88.13
non-IID 63.25 0.36 63.63 22.34 62.56 86.89

presents a similar significant vulnerability to BD-FMFL, while
it is more robust against the classic BD-FL. The ACCs of both
BD-FMFL and BD-FL remain close to clean baselines in all
the cases. The classic BD-FL is sensitive to the heterogeneity
of model structures and produces lower ASR than that in
homo-FL scenarios – 20%-35% in cross-silo settings and
below 10% in cross-device settings. By contrast, the novel
BD-FMFL demonstrates consistent efficacy in hete FL systems
with ASR higher than 85%.

We evaluate the robustness of the FL backdoor defenses
under the heterogeneous scenarios, and the results are shown
in Tab. IV. Similar to the homogeneous case, all the backdoor
defenses demonstrate insufficient robustness when confronted
with the novel threat in FM-FL. Due to non-anomalous local
updates, all the robust aggregation strategies fail to mitigate
BD-FMFL. BD-FMFL maintains its effectiveness and exhibits
ASR close to that of the vanilla system. Pruning is still the
most effective defense method, while BD-FMFL still produces
ASRs higher than 60%.

C. Ablation Study

BD-FMFL leverages poisoned synthetic data during both
model initialization and iterative knowledge distillation. We
perform an ablation study (Fig. 2a) in a cross-silo homo-FL
and hete-FL settings with the IID CIFAR-10 dataset to evaluate
the impact of compromising each stage separately.

AS-1: Threat Planting in Initialization. To assess the
role of threat planting during initialization, we introduce
BD-FMFLno-init, where the poisoned synthetic dataset is only
used for ensemble distillation, and a clean version synthetic
dataset (without trigger instances) is used for initialization.
Fig. 2a shows both attacks minimally affect ACC. BD-FMFL
maintains an ASR above 80% throughout training, while

Communication Round Communication Round

A
C

C

A
SR

(a) homo-FL scenario

Communication Round Communication Round
A

C
C

A
SR

(b) hete-FL scenario

Fig. 2: Ablation study in cross-silo FL using the IID CIFAR-
10. AS-1/3: Utilizes poisoned synthetic data exclusively in
ensemble distillation. AS-2/4: Utilizes poisoned synthetic data
exclusively in model initialization.

BD-FMFLno-init takes 40 rounds to achieve the same ASR, as
uncorrupted initial models struggle to align with triggered in-
stances. Over time, the contaminated synthetic data gradually
corrupts the client models.

AS-2: Threat Reinforcement via Mutual Distillation. We
evaluate the effect of iterative malicious knowledge distilla-
tion by introducing BD-FMFLno-KD, where poisoned synthetic
datasets are used only in initialization, with clean data for en-
semble distillation. As seen in Fig. 2a, both attack have similar
influence on ACC. BD-FMFLno-KD demonstrate efficacy in the
initial stages but its ASR gradually declines to 10% as training
progresses. The absence of iterative reinforcement weakens the
attack’s impact, as local fine-tuning on clean data mitigates the
threat, leading to eventual forgetting by convergence. Similar
results are observed in hete-FL settings (Fig. 2b).

D. Hyper-parameter Study

We analyze five key factors influencing BD-FMFL’s impact
on FM-FL vulnerability in cross-silo homo-FL settings. The
results suggest that the effectiveness of the novel threat is not
sensitive to the hyper-parameter settings of FL, highlighting
the importance of advanced robust FM-FL systems.

Poisoning Rate. We vary the poisoning rate of the synthetic
data at 0.01, 0.05, 0.1, 0.15, and 0.2. Fig. 3(a) shows that when
the poisoning rate exceeds 0.1, the attack becomes effective



TABLE IV: Robustness of current FL defenses against the novel attack strategy for FM integrated heterogeneous FL systems.

Data NormThr DP Krum ClipCluster SignGuard RFOUT Pruning
ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR

Cross-Silo

CIFAR-10 IID 3.28 77.39 16.22 87.35 0.52 93.74 1.22 93.47 0.34 93.75 0.40 93.74 2.90 72.55
non-IID 1.48 87.54 3.64 87.60 31.58 89.02 0.36 89.30 0.32 90.98 0.21 91.03 0.69 64.73

CIFAR-100 IID 3.76 69.82 14.70 64.65 0.10 87.96 1.58 89.35 0.80 89.22 0.48 89.26 1.14 81.05
non-IID 3.92 55.04 4.15 51.78 6.04 85.92 1.52 84.24 0.27 84.76 0.14 64.77 1.12 71.01

Cross-Device

CIFAR-10 IID 4.00 95.55 7.20 95.95 5.20 96.40 4.48 95.37 0.10 96.46 0.10 96.38 1.72 87.19
non-IID 6.78 88.86 5.23 89.42 22.84 91.55 14.73 95.66 0.38 92.33 0.34 92.41 2.21 72.91

CIFAR-100 IID 3.70 80.34 9.60 81.95 0.75 89.04 0.10 90.93 0.02 90.95 4.24 92.81 0.74 84.06
non-IID 3.95 58.92 4.57 58.96 8.94 83.28 0.12 89.16 0.34 93.00 0.24 89.12 0.44 62.22

(a) Poisoning Ratio (b) LDI (c) Data Heterogeneity Degree

ACC ASR

0.2             0.4             0.6            0.8
(d) Weight in KD Loss

0.5              1 5              10
(e) Temperature in KD Loss

Fig. 3: Hyper-parameter study in cross-silo homo-FL scenarios. (a)(b) use the IID CIFAR-10 dataset, (c) uses the non-IID
CIFAR-100 dataset, (d)(e) use the IID CIFAR-10 dataset. LDI refers to the ratio between the number of iterations of (client)
local training and that of (server) knowledge distillation.

with an ASR exceeding 80%, while ACC remains largely
unaffected.

Local-Distillation Iteration (LDI) Ratio. The LDI ratio,
defined as the ratio of client-side local training epochs to
server-side distillation epochs per communication round, is
tested at values 0.5, 1, 1.5, 2, and 2.5 (default = 1). As shown
in Fig. 3 (b), the ASR decreases slightly as the LDI ratio
increases, yet remains above 80%.

Data Heterogeneity Degree. The impact of non-IID
data distribution is studied using Dirichlet parameter β =
0.1, 0.3, 0.5, 0.7, 1. Fig. 3(c) shows that ACC decreases with
increasing β, as more balanced local data distribution makes
learning scarce classes harder. The ASR remains high under
different settings.

Weight Factor in KD Loss. We test the weight factor α in
Eq. 1 at 0.2, 0.4, 0.6, and 0.8 (default = 0.2). Fig. 3(d) shows
ACC is largely unaffected by α, while ASR drops from 85% to
65% when α increases beyond 0.6. The attack remains highly
effective at typical α values.

Temperature in KD Loss. Temperature τ (Eq. 1) regulates
the softness of teacher model logits. Evaluated at 0.5, 1, 5, and
10 (default = 1), Fig. 3(e) shows both ACC and ASR remain
largely unaffected by τ variations.

E. Performance Evaluation on Text Dataset

As shown in Tab. V, we evaluate the vulnerability of FM-FL
systems and robustness of the existing FL backdoor defenses
under the proposed attack strategy on text classification. Here
we consider both homogeneous and heterogeneous FL systems
in the cross-silo setting using both IID and non-IID AG-NEWS
datasets. The results are consistent with those in the image
classification task. The vanilla FM-FL is highly vulnerable
to BD-FMFL, with ASR higher than 70%. Moreover, all the
defense methods exhibit insufficient robustness against the
proposed attack approach. The average ASR drops less than
5% when using NormThr and less than 3% when using

Krum. Using DP, the ASR decreases by about 30%, and
the average ACC also falls by over 10% due to Gaussian
noise introduced into the global model. This defense method
experiences a significant reduction in ACC, especially in
heterogeneous FL scenarios. The Pruning defense method
remains the most effective among all defense mechanisms.
The average ASR has been controlled to around 60%.

TABLE V: Vulnerability of FM-FL systems and robustness of
current FL defenses against the novel attack strategy in cross-
silo scenarios using the AG-NEWS dataset.

Setting Vanilla NormThr DP Krum Pruning
ACC ASR ACC↓ASR ACC↓ASR ACC↓ASR ACC↓ASR

Homo-FL
IID 89.73 76.07 2.13 71.34 11.50 40.25 1.11 75.21 0.31 37.81
non-IID 96.26 71.00 0.78 66.83 8.97 38.76 0.45 69.87 1.06 65.66

Hete-FL
IID 89.03 79.17 0.92 78.56 16.57 43.94 0.48 76.27 2.05 62.88
non-IID 95.75 76.96 1.41 74.60 14.51 50.83 7.31 64.29 0.87 71.17

V. CONCLUSION

In this paper, we propose a novel attack strategy that utilizes
the inherent security issues to compromise the FL client mod-
els. We specialize the strategy to backdoor attacks and conduct
the first comprehensive evaluation of the vulnerability of the
FM-FL under novel threats. Our study, employing a range
of established models and benchmark datasets in both image
and text domains, demonstrates the significant susceptibility of
FM-FL under the novel threat. Besides, existing FL defenses
offer limited protection against such threats. Our work closes
the gap in the literature investigating the robustness of FM-FL
and highlights the critical need for enhanced security protocols
to protect FL systems in the era of FMs.
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