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Abstract

Modern multi-modal learning leverages large models, such
as large language models (LLMs), to integrate diverse data
sources (e.g., text, images, audio, and video) and enhance
understanding and decision-making. However, the inher-
ent complexities of multi-modal learning introduce unique
safety challenges that existing frameworks, primarily de-
signed for uni-modal models, fail to address. This tuto-
rial explores the emerging safety risks in multi-modal learn-
ing and provides insights into future research directions.
We begin by examining the unique characteristics of multi-
modal learning – modality integration, alignment, and fu-
sion. We then review existing safety studies across adver-
sarial attacks, data poisoning, jailbreak exploits, and hallu-
cinations. Next, we analyze emerging safety threats exploit-
ing multi-modal challenges, including risks from additional
modalities, modality misalignment, and fused representa-
tions. Finally, we discuss potential directions for enhancing
the safety of multi-modal learning. As multi-modal learning
expands, addressing its safety risks is crucial. This tutorial
lays the foundation for understanding these challenges and
fostering discussions on trustworthy systems.

Subject Areas: Multi-modal AI safety (Primary), Multi-
modal Learning, Adversarial Robustness, Data Poisoning,
Hallucination
Duration: Half Days
Format: In-Person Attendence

1. EXPECTED TARGET AUDIENCE
This tutorial is designed for researchers, practitioners, and
students interested in the challenges and advancements in
safe multi-modal learning. Attendees shall have a foun-
dational understanding of machine learning and computer
vision, though familiarity with multi-modal learning is not
required. The session will be particularly valuable for those
working on applications involving vision-language models,
autonomous systems, and human-centered AI, where ensur-
ing safety and robustness is critical. With an expected au-
dience of approximately 100 participants, this tutorial will

provide a mix of theoretical insights and practical guide-
lines to equip attendees with the necessary tools to navigate
the complexities of building safe multi-modal learning.

2. TUTORIAL OUTLINE
• Part 1: Introduction and Background (30 mins)

➤ Uniqueness of Multi-Modal Learning
➤ Revisiting Safety Studies
➤ Security Challenges of Multi-Modal Learning

• Part 2: Modality Integration Exploitation (45 mins)
➤ Adversarial Perturbations in Image Modality
➤ Jailbreak Prompts in Text Modality

• Break (10 mins)
• Part 3: Modality Misalignment (45 mins)

➤ Hallucinations Caused by Modality Misalignment
➤ Attacks Exploiting Embedding Misalignment

• Part 4: Fused Vulnerabilities (45 mins)
➤ Poisoning Attacks via Cross-Modal Fusion
➤ Cross-Modal Threat Switching

• Break (10 mins)
• Part 5: Conclusion and Future Directions (25 mins)

➤ Limitations of Existing Defenses
➤ Future Directions in Secure Multi-Modal Learning

3. TUTORIAL DESCRIPTIONS

Part 1: Introduction and Background

Multi-modal AI integrates diverse modalities to enhance
understanding and decision-making in applications like au-
tonomous vehicles and medical diagnostics. However,
its complexity introduces safety challenges that existing
frameworks fail to address. To lay a foundation, we begin
this tutorial by distinguishing multi-modal from uni-modal
learning and reviewing existing safety studies.

• Uniqueness of Multi-Modal Learning. The unique-
ness of multi-modal learning lies in modality alignment
and modality fusion, enabling the integration of diverse
modalities with distinct statistical and structural proper-
ties. We will introduce classic multi-modal AI architec-
tures and strategies for effective alignment and fusion.



• Revisiting Safety Studies. In this section, we will re-
view well established studies on the safety of uni-modal
learning, We focus on major safety issues, including ad-
versarial attacks, data poisoning, jailbreak exploits, and
hallucinations. We want to briefly introduce background
knowledge for the audience to understand common safety
measures in uni-modal data.

• Security Challenges Unique to Multi-Modal Learn-
ing. Given the unique challenges of multi-modal learn-
ing, we categorize existing research on multi-modal AI
safety into Modality Integration Exploitation, Modality
Misalignment, and Fused Vulnerabilities, which are ex-
plored in Parts 2, 3, and 4.

Part 2: Modality Integration Exploitation
This section examines safety risks from integrating ad-
ditional modalities, where independent manipulations can
propagate and compromise system integrity. We focus on
adversarial perturbations originating from image data and
jailbreak prompts in the text modality.
• Adversarial Perturbations in Image Modality. We will

take common vision-language tasks as examples such as
visual question answering or visual reasoning to explain
how existing multi-modal models can be easily fooled by
attacking different modality separately without consider-
ing their alignment and fusion, by discussing represen-
tative papers in this direction include VLAttack [8] and
VQAttack [9].

• Jailbreak Prompts in Text Modality. We will introduce
multimodal jailbreak through a detailed taxonomy, cov-
ering modalities including Any-to-Text, Any-to-Vision,
and Any-to-Any. We will firstly categorize both attack
methods [4] and defense methods [2] from input-level,
encoder-level, generator-level, and output-level attacks.
Then we will detail the evaluation covering manual eval-
uation and automated evaluation with a focus on detector-
based, LLM-based and rule-based multimodal jailbreak.

Part 3: Modality Misalignment
This section explores safety threats from modality misalign-
ment, which can naturally occur or be exploited by mali-
cious actors to generate hallucinated, incorrect, or harmful
outputs.

• Hallucinations Caused by Modality Misalignment.
Multimodal hallucination often trace back to the mis-
alignment between vision and language. We will
highlight two key patterns in this misalignment: (1)
Overtrust on language knowledge more than their vi-
sual processing, especially in spatial reasoning [1]; (2)
tendency to invent objects that are not grounded in the
vision modality or misinterpret objects at different lev-
els of detail [10]. We will then detail the evaluation and
benchmarks related to such misalignment.

• Attacks Exploiting Embedding Misalignment. Ad-
versaries can intentionally manipulate intra-modal cor-
relations to misalign embeddings, distorting the model’s
cross-modal understanding and leading to incorrect or
harmful outputs. We will discuss studies such as [6, 7],
which achieve this by perturbing the visual modality to
reduce its correlation with text embeddings, causing the
model to produce nonsensical results due to the loss of
cross-modal information.

Part 4: Fused Vulnerabilities
In this section, we introduce threats that arise from the in-
teraction of manipulated inputs, rather than isolated attacks
on a single modality.

• Poisoning Attacks via Cross-Modal Fusion. These at-
tacks exploit the fusion mechanism, where adversarial
signals appear benign when considered individually but
lead to system failures when combined. We will review
works that follow this strategy, such as [5], which em-
bed backdoor triggers in both image and text modalities.
After fine-tuning, the model exhibits malicious behavior
only when both triggers are present.

• Cross-Modal Threat Switching: Injection & Activa-
tion. Each modality’s distinct properties create unique
vulnerabilities, as discussed in Part 1. Adversaries can
strategically select the appropriate modality for threat
injection and activation. We will review works follow-
ing this approach, such as [3], which shows that visual
data is well-suited for injecting threats due to its contin-
uous nature, while text data is more effective for activa-
tion because of its efficiency during inference.

Part 5: Conclusion and Future Directions
After discussing the unique safety challenges above, we will
conclude our tutorial by first summarizing the limitations
of existing defenses against those vulnerabilities, which in-
clude computation overhead, generalizability against dif-
ferent attacks, and explainability. Later, we will summa-
rize the discussed research and explore future directions for
enhancing the safety of multi-modal learning. Our discus-
sion will focus on aligning multi-modal learning objectives
– modality alignment and fusion – while also addressing
the challenges posed by the current AI trend of large-scale
models trained with limited available data. We highlight
potential strategies to improve the overall safety and relia-
bility of multi-modal AI systems.

4. POTENTIAL SOCIETAL IMPACTS
With the rise of advanced multimodal AI systems like Ope-
nAI’s GPT-4o, which integrates multiple data modalities
(e.g., vision, language, and audio), public concerns about
their security and reliability have grown. These large-scale
models introduce new vulnerabilities that are not yet fully



understood, making it crucial to explore their risks and de-
fense mechanisms. Our tutorial will provide the audience
with a clear understanding of the unique challenges in se-
curing multimodal AI and equip them with foundational
knowledge on robustness. By fostering awareness and dis-
cussion on the safety of multimodal learning, this tutorial
will contribute to the development of more secure and trust-
worthy AI systems, ensuring their responsible deployment
in real-world applications.

5. SIMILAR TUTORIALS

The following list includes previous ICCV, CVPR, and
ECCV tutorials related to multi-modal learning and the
trustworthiness of foundation models.

• “Large Multimodal Foundation Models” at ECCV 2024
in Milan, Italy. Similarities and differences: This tuto-
rial covers the history, applications, and future directions
of multi-modal learning. Ours addresses a critical miss-
ing aspect – safety – by specifically exploring the safety
challenges unique to multi-modal AI.

• “From Multimodal LLM to Human-level AI: Modality, In-
struction, Reasoning, Efficiency and Beyond” at CVPR
2024 in Seattle. Similarities and differences: This tu-
torial reviews research on multi-modal language models,
including architecture design, instructional learning, hal-
lucination, reasoning, and efficient learning. While we
also discuss hallucination in multi-modal AI, our focus is
on its safety implications, along with other threats such as
adversarial attacks.

• “Trustworthy AI in the Era of Foundation Models” at
CVPR 2023 in Vancouver, Canada. Similarities and
differences: This tutorial covers security, robustness,
privacy, and societal issues in vision-based applications
within the era of foundation models. While both tuto-
rials focus on AI safety, ours specifically addresses the
unique safety challenges of multi-modal AI, distinguish-
ing it from traditional uni-modal learning.

• “Tutorial on MultiModal Machine Learning” at CVPR
2022 in New Orleans. Similarities and differences: This
tutorial explores core technical challenges in multi-modal
machine learning, such as representation, alignment, and
reasoning. Our tutorial focuses on the safety challenges
arising from the unique characteristics of multi-modal
learning.

While these tutorials explore multi-modal and trustwor-
thy AI, they do not specifically address the unique safety
challenges of multi-modal systems. Our tutorial fills this
gap with a focused discussion on emerging safety risks and
considerations.
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