
Rethinking the Safety Landscape for Foundation Models:
A Multi-Modal Perspective

Xi Li1∗*, Shu Zhao2, Fei Zhao1, Runlong Yu3

1University of Alabama at Birmingham, 2The Pennsylvania State University, 3University of Alabama
xli7@uab.edu, smz5505@psu.edu, larry5@uab.edu, ryu5@ua.edu

Abstract

With the rise of multi-modal foundation models in domains
such as autonomous driving, healthcare, and virtual assis-
tants, safety concerns have become increasingly important.
Unlike uni-modal learning, these models rely on modal-
ity alignment and fusion to integrate cross-modal informa-
tion – introducing novel threats that existing safety frame-
works fail to address. Current safety solutions often assume
prior knowledge of compromised modalities and overlook
complex cross-modal interactions. This paper calls for re-
thinking the safety landscape from a multi-modal perspec-
tive. We identify emerging threats, categorize existing ef-
forts, and outline future research directions, including new
threat models, safety assumptions, and fusion-aware de-
fenses. Our goal is to open a new trajectory for trustworthy
multi-modal foundation models.

1. Introduction
Multi-modal foundation models (FM) leverages large mod-
els, such as large language models (LLMs), to integrate
diverse data sources (e.g., text, images, audio, and video)
and enhance understanding and decision-making [1, 10, 18,
28, 41, 51]. These models enable applications such as au-
tonomous driving (using sensor data for navigation), vir-
tual assistants like Siri and Alexa, and medical diagnostics
(e.g., combining blood tests with patient history for dia-
betes prediction). The integration of multiple modalities
makes multi-modal learning fundamentally different and
more challenging than classic uni-modal learning. Its foun-
dation lies in two core processes: modality alignment and
modality fusion [6, 85, 94, 98, 109]. Modality alignment
ensures that features from different modalities are mapped
into a shared representation space, while modality fusion
combines the aligned information to support more compre-
hensive and accurate reasoning.

As FMs evolve from uni-modal to multi-modal architec-
tures, the machine learning safety landscape is undergoing
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a fundamental transformation. The unique characteristics
of multi-modal learning introduce several new challenges.
First, additional modalities bring modality-specific vulnera-
bilities inherent to each data type. Second, adversarial mis-
alignment across modalities can cause semantic inconsis-
tencies or unexpected behaviors. Third, the fusion can be
exploited – signals that appear benign in isolation can trig-
ger harmful outcomes when combined.

However, current safety research remains largely
grounded in uni-modal assumptions and falls short in ad-
dressing the complex vulnerabilities introduced by multi-
modal interactions. Many methods rely on prior knowl-
edge of which modality is compromised – an unrealistic
assumption in multi-modal settings – where the type and
number of affected modalities are often unknown. Besides,
these safety solutions are not explicitly aligned with the core
goals of modality alignment and fusion, and may uninten-
tionally degrade overall performance. This disconnect in-
troduces critical blind spots, limiting the effectiveness of
existing safety solutions for multi-modal models.

Given the rapid deployment of multi-modal FMs and the
growing gap in their safety research, we propose to rethink
the safety landscape through the lens of multi-modal
learning. This vision calls for redefining threat models
and safety assumptions, identifying emerging risks unique
to multi-modal systems, and developing solutions aligned
with modality alignment and fusion. By grounding safety
in multi-modal principles, we aim to advance both safety
theory and system design, and to shift the community’s per-
spective toward a new trajectory for trustworthy AI.

This paper focuses on the safety landscape of multi-
modal large language models (MM-LLMs), highlighting
emerging threats, threat models, and defense strategies dis-
tinct from the uni-modal setting (as illustrated in Figure 1).
Section 2 reviews current safety landscape rooted in uni-
modal learning, including adversarial attacks, data poison-
ing, jailbreaks, and hallucinations. Section 3 presents the
unique characteristics of multi-modal learning and the new
safety challenges they pose, along with a brief categoriza-
tion of related work. Section 4 outlines future research di-
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Figure 1. A multi-modal perspective on the evolving safety landscape of foundation models, illustrated with Vision-Language LLM.

rections toward a safety framework grounded in the multi-
modal perspective.

2. Existing Safety Landscape

We briefly review the current safety landscape shaped by
uni-modal learning. We adopt standard access definitions:
white-box (full model access), black-box (query-only), and
gray-box (partial access, e.g., data or architecture).

2.1. Adversarial Attacks

Attack Mechanisms. Adversarial attacks add impercepti-
ble perturbations to inputs to mislead the model at infer-
ence, typically via loss-based optimization. They operate
under white-box [11, 27, 58] or black-box settings [13],
with norm constraints (l∞ or l2) ensuring stealth.
Defense Strategies. Defenses usually assume white-box
access and a clean validation set. Common strategies in-
clude adversarial training [58], which iteratively generates
and defends against adversarial examples, and randomized
smoothing [15, 40], which averages predictions over noisy
inputs to improve robustness against small perturbations.

2.2. Data Poisoning

Attack Mechanisms. Poisoning attackers inject malicious
samples into the training data of the victim model to induce
misbehavior. Label-flipping attacks degrade performance
by altering training labels [92, 104], while backdoor attacks
embed triggers that activate malicious behavior only under
specific conditions [14, 16, 29, 43, 60, 61, 66, 70].
Defense Strategies. Defenses aim to mitigate poison-
ing while preserving model utility. Strategies span three
stages: Pre-training methods sanitize the training set [63,
78]; During-training methods select trustworthy training
samples [21, 48, 73] or apply self-supervised learning
[33, 39, 84]; Post-training methods detect poisoned mod-

els or inputs [25, 44, 80, 88], or directly mitigate back-
doors [46, 47, 53, 102].

2.3. Jailbreak
Attack Mechanisms. Jailbreak attacks craft prompts to
bypass safety filters in LLMs and elicit harmful outputs.
White-box methods optimize adversarial prefixes or suf-
fixes via gradients [36, 110, 112]; gray-box attackers ad-
just prompts using logits [30, 106] or lightweight retraining
[68, 96, 103]; black-box methods exploit model capabili-
ties (e.g., roleplay, reasoning) [45, 82, 91] or use LLMs to
generate adversarial prompts [20].
Defense Strategies. Defenses aim to enforce safety align-
ment across access levels. Black-box approaches filter ad-
versarial prompts [2, 35]; white-box methods include safety
fine-tuning [9, 19], reinforcement learning from human
feedback (RLHF) [62], and self-correction [76].

2.4. Hallucination
Definition. Hallucination refers to generating confident but
factually incorrect or unsupported outputs [34], typically
caused by noisy data or biased data [7, 74], spurious cor-
relations [59, 83], or lack of uncertainty estimation [23]. It
is a reliability issue rather than an adversarial threat, lacking
a formal threat model.
Mitigating Strategies. Mitigation spans three stages: Pre-
training – data filtering [64, 87], deduplication [38], and
high-quality sources [31, 69]; Training – RLHF [111],
contrastive learning [75], and chain-of-thought [89]; Post-
training—retrieval-augmented generation [32], prompt en-
gineering [8], and fact-checking modules [23, 101].

3. Emerging Safety Challenges
We focus on the safety of MM-LLMs, which process di-
verse inputs via modality-specific encoders and use an LLM
to fuse and generate outputs [85, 94, 98, 109]. Their design



relies on: (1) Modality Alignment – using encoders (e.g.,
ViTs) to map different modalities into a shared embedding
space compatible with LLMs [3, 22, 90]; and (2) Modality
Fusion – using cross-attention layers in the LLM to inte-
grate aligned embeddings for tasks like vision-conditioned
text generation [1, 12, 49, 51].

These unique mechanisms introduce new safety chal-
lenges, which we organize into: (1) Compromised Modal-
ity Integration, (2) Modality Misalignment, and (3) Fused
Safety Risks. We define each category and summarize rele-
vant studies below1.

3.1. Compromised Modality Integration
Compromised Modality Integration refers to threats in-
herited from individual modalities, where manipulation of a
single or few modalities propagates through the integration
process and compromises overall model behavior.

Several studies have extended adversarial attacks to
MM-LLMs, typically by optimizing visual perturbations to
disrupt the vision encoder’s representations. By corrupting
only the visual input, these attacks induce incorrect or harm-
ful outputs. For example, [57, 71] craft perturbations that
force MM-LLMs to produce attacker-specified text. Other
works [81, 86, 99] maximize embedding distances between
clean and perturbed images, distorting the model’s percep-
tion. [24] delays the end-of-sequence token to increase un-
certainty, while [5] shows adversarial images can leak con-
text, bypass safety, and induce false or arbitrary outputs.

Jailbreak prompts can compromise the safety of MM-
LLMs by triggering harmful outputs [20, 54, 100]. Beyond
text-only attacks, adversaries may exploit other modalities
to bypass safety mechanisms primarily designed for text.
In such cases, text prompts remain benign while the visual
modality is manipulated to trigger jailbreak behaviors. For
example, FigStep [26] embeds rephrased jailbreak prompts
within images. Other works transfer vulnerabilities from
text to vision by optimizing visual perturbations that alone
can trigger illegal responses [67, 72].

Incorporating additional modalities may exacerbate hal-
lucination. Inputs such as vision, audio, or tabular data are
often noisy, occluded, or low-resolution. When modality
encoders fail to capture critical features, the LLM tends to
compensate by relying on pretrained priors, filling in per-
ceptual gaps with potentially inaccurate or fabricated infor-
mation [37, 52, 56, 105].

3.2. Modality Misalignment
Modality Misalignment refers to risks where adversaries
manipulate cross-modal embeddings to disrupt semantic or
structural alignment, misleading the model at inference.
Misalignment can be (1) untargeted, where the perturbed

1Note that each category may involve multiple or mixed threats, as
multi-modal threats are inherently cross-modal and compound.

embedding deviates from the clean ones, or (2) targeted,
where it mimics a harmful representation.

For untargeted misalignment, most works aim to max-
imize the distance between the perturbed modality (typi-
cally the image) and the clean one (typically the text) in the
shared embedding space. [50] generates a universal adver-
sarial patch by minimizing cosine similarity between visual
and textual embeddings. [86] adds visual perturbations to
weaken their correlation. [81] disturbs features that pro-
mote consistency and amplifies those that increase cross-
modal discrepancy.

For targeted misalignment, [107] explores three strate-
gies: (1) aligning the adversarial image embedding with
the target text, (2) aligning it with the embedding of an
image corresponding to the target text, or (3) aligning the
model’s output on the adversarial image with the target
text. [4] introduces a sample-specific backdoor trigger and
trigger-aware prompt to pull visual embeddings toward the
target class. [95] uses data poisoning to make embed-
dings of perturbed destination images resemble those of the
original concept, inducing targeted generation. [72] opti-
mizes visual perturbations to mimic harmful embeddings
(e.g., OCR-decoded jailbreak prompts or visual triggers),
enabling jailbreaks. Similarly, [67] crafts adversarial vi-
suals that increase the likelihood of harmful text output,
breaking alignment.

Unlike the adversarial misalignment discussed above,
hallucination-related misalignment arises from structural
flaws in modality alignment. Compared to uni-modal mod-
els, hallucinations in MM-LLMs stem from deeper mis-
matches in the sensory-to-language pipeline. Mapping con-
tinuous sensory signals to discrete language often oversim-
plifies modality-specific information, leading to alignment
errors and information loss [17, 42, 97, 108].

3.3. Fused Safety Risks

Fused safety risks refer to threats that exploit the fusion
mechanism, where adversarial signals appear benign in iso-
lation but become harmful when combined during modality
fusion. This makes the threat harder to detect. [79] em-
beds backdoor triggers in both image and text modalities;
the model behaves normally on each modality alone but ex-
hibits malicious behavior when both triggers are present.
[55] highlights how different modalities contribute asym-
metrically to such attacks: visual inputs, due to their con-
tinuous nature, are suitable for injecting triggers, while text
inputs are more effective for activating malicious responses
during inference. [77] replaces textual captions with jail-
break prompts during fine-tuning, causing the model to as-
sociate harmful queries with specific clean images. At infer-
ence, the model generates harmful content when presented
with both. [26] places the jailbreak prompt in the visual
input while using an inciting but non-explicit text query to



coax the model into providing harmful output.

4. Future Research Directions
Limitations of Classic Solutions for Multi-Modal Safety.
Most existing defenses are designed for small-scale uni-
modal systems and fall short in multi-modal settings due
to two key challenges: (a) Modality Heterogeneity. Uni-
modal methods often assume a known compromised modal-
ity [25, 58, 65, 93], whereas multi-modal systems can be at-
tacked through any combination of modalities without such
prior knowledge. (b) Alignment and Interaction. Uni-
modal defenses cannot be trivially extended to multi-modal
settings, as they fail to support, or may even hinder, modal-
ity alignment and fusion [39, 53, 84]. In light of these chal-
lenges, we revisit the safety landscape of multi-modal FMs
by rethinking the assumptions behind threats and safety so-
lutions, and outline future research directions for develop-
ing effective and aligned safety solutions.

4.1. New Threat Model and Assumptions
We highlight key shifts in threat modeling, including at-
tacker capability, cross-modality, and attack surface.
(a) Relaxed Capability. Due to the compositional nature,
attackers no longer need full-system access. Knowledge of
just one modality (e.g., vision) can suffice to compromise
the entire model. For example, adversarial images crafted
against a visual encoder can exploit vulnerabilities in down-
stream alignment and fusion, leading to harmful outputs.
(b) Cross-Modality Attacks. Multi-modal models en-
able cross-modality attacks that exploit interactions across
modalities. For instance, an adversarial image can trigger
a jailbreak attack, or a malicious prompt can misguide the
interpretation of visual content.
(c) Expanded Attack Surface. Unlike uni-modal mod-
els where attacks mostly target the input-output mapping,
multi-modal models introduce new vulnerable stages like
modality alignment and fusion. Threats can be injected in-
ternally, increasing the number of attack vectors.

Compared to uni-modal systems, safety assumptions in
multi-modal foundation models face new constraints.
(a) Limited Knowledge of Attack Scope. In practice, de-
fenders cannot assume the type or number of compromised
modalities. For example, assuming only the visual modal-
ity is vulnerable and applying defenses designed for con-
tinuous data may leave the system exposed to text-based or
cross-modal attacks. Similarly, assuming a specific attack
type is unrealistic due to the compositional and emergent
nature of cross-modality threats.
(b) Modality-Aware, Not Modality-Isolated Solutions.
Designing defenses for each modality independently can
disrupt the alignment and fusion objectives that underlie
multi-modal learning. Defenses must operate with aware-
ness of inter-modal relationships to avoid degrading model

performance or introducing new inconsistencies.
(c) Access Beyond Input/Output. Defenses may need ac-
cess to intermediate representations, especially in the em-
bedding space where modality alignment occurs. Since at-
tacks can manifest during alignment or fusion stages, effec-
tive defense mechanisms may require monitoring or inter-
vention at these internal points.

4.2. Future Directions for Multi-Modal Safety
Multi-modal FMs introduce safety challenges that go be-
yond the scope of uni-modal solutions. Their expanded at-
tack surface and cross-modality interactions call for rethink-
ing safety strategies. We outline future directions to guide
and inspire research on multi-modal safety.
(a) Modality-Agnostic Solutions. While applying sepa-
rate, modality-specific defenses in an ensemble manner is
feasible, it is neither scalable nor well-aligned with the
integrated nature of multi-modal learning. Future work
should instead pursue unified, modality-agnostic strategies
for threat detection and mitigation across modalities. A
promising direction is to extend defenses into the shared
representation space and fusion stages, where cross-modal
interactions and vulnerabilities emerge. Moreover, adapting
existing methods to handle diverse input types, such as con-
tinuous (e.g., images) and discrete (e.g., text), can support a
more coherent and generalizable safety framework.
(b) Tolerance to Corruption in Partial Modalities. Multi-
modal foundation models should remain robust even when
some modalities are compromised or unreliable. A key re-
quirement for safety is avoiding over-reliance on any sin-
gle modality, which creates a single point of failure. While
modalities provide complementary information, they often
include redundant signals. Future defenses should lever-
age this redundancy, e.g., via selective modality rejection,
confidence-aware fusion, or adaptive weighting, to down-
weight corrupted inputs while preserving performance.
(c) Safety-Aware Multi-Modal Designs. Effective so-
lutions must be designed with awareness of the learning
mechanisms of modality alignment and fusion. Aggres-
sively filtering inputs or suppressing representations in a
modality-specific way may disrupt cross-modal coherence,
harming both performance and robustness. Future work
should explore strategies that jointly optimize for safety and
alignment, such as cross-modal consistency regularization,
and integrate safety into the fusion process through robust
fusion mechanisms. Ensuring that defenses preserve inter-
modal relationships is essential for maintaining the integrity
and effectiveness of multi-modal learning systems.

5. Conclusion
This paper calls for rethinking safety in multi-modal FMs,
highlighting how multi-modal mechanisms fundamentally
reshape the safety landscape. We identify emerging threats



that existing uni-modal solutions cannot fully address, out-
line paradigm shifts in threat models and safety assump-
tions, and propose future research directions grounded in
the unique characteristics of multi-modal systems. We hope
this perspective encourages broader efforts toward unified
safety frameworks for next-generation AI systems.
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