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ABSTRACT

Federated learning (FL) enables decentralized model

training while preserving privacy. Recently, integrating Foun-

dation Models (FMs) into FL has boosted performance but

also introduced a novel backdoor attack mechanism. Attack-

ers can exploit the FM’s capabilities to embed backdoors

into synthetic data generated by FMs used for model fusion,

subsequently infecting all client models through knowledge

sharing without involvement in the long-lasting FL process.

These novel attacks render existing FL backdoor defenses

ineffective, as they primarily detect anomalies among client

updates, which may appear uniformly malicious under this

attack. Our work proposes a novel data-free defense strategy

by constraining abnormal activations in the hidden feature

space during model aggregation on the server. The activa-

tion constraints, optimized using synthetic data alongside

FL training, mitigate the attack while barely affecting model

performance, as the parameters remain untouched. Extensive

experiments demonstrate its effectiveness against both novel

and classic backdoor attacks, outperforming existing defenses

while maintaining model performance.

Index Terms— Backdoor Defense, Federated Learning,

Foundation Models, Adversarial Machine Learning

1. INTRODUCTION

Federated learning (FL) enables collaborative model train-

ing across decentralized institutes or devices, enhancing data

privacy and security with applications in healthcare [1, 2],

finance [3], and IoT [4]. Recently, integrating Foundation

Models (FMs), such as GPT series, LLaMA series, and Sta-

ble Diffusion, introduces new dynamics to FL. Pre-trained on

large datasets, FMs excel in tasks from natural language pro-

cessing to vision data generation and recognition, augment-

ing FL by improving performance through knowledge distil-

lation [5, 6] or enabling client knowledge sharing with syn-

thetic data generation [7, 8].

However, incorporating FMs into FL systems also intro-

duces new complexities and exacerbates existing threats. The

inherent vulnerabilities of FMs create additional attack vec-

tors through their interaction with FL. Recent studies [9, 10]

show that FMs’ in-context learning (ICL) capabilities enable

attackers to exploit novel attacks against FL. Specifically,

an attacker can operate externally to the FL process with-

out maintaining its presence throughout its duration. For

instance, in a typical FM-integrated FL framework, a large

language model (LLM) generates synthetic data for aggre-

gating client model parameters. An attacker can embed a

backdoor into the LLM-generated synthetic dataset using

malicious prompts during inference. This backdoor is sub-

sequently transmitted to all FL clients during knowledge

sharing, thereby undermining their integrity.

Existing FL backdoor defense methods, which typically

detect anomalies among clients during client model aggrega-

tion, are ineffective against the novel attacking mechanism

[11, 12, 13, 14, 15]. Since all client updates appear uniformly

malicious due to compromised synthetic data, no detectable

anomalies arise. Moreover, many general machine learning

(ML) backdoor defenses are unsuitable for FL. Some require

access to clean, real datasets [16, 17], conflicting with FL’s

data isolation principle, while others are time-intensive [18],

making them impractical for continuous FL training cycles.

Given the novel threats from ML advances, it is critical

to develop an effective defense strategy that addresses these

challenges within the FL framework. Since malicious updates

could potentially originate from the majority of clients rather

than being limited to outliers, a feasible method is to periodi-

cally constrain potential malicious updates from all clients on

the server. Studies [19, 20, 17] show that backdoor attacks

often cause abnormally large activations in the hidden lay-

ers of the compromised model. To mitigate this, one could

impose upper bounds on the internal activations following

the aggregation of client updates. These constraints aim to

keep activations within reasonable limits, effectively mitigat-

ing the risk of novel backdoor attacks. The optimal upper

bounds can be adjusted to balance model performance on cer-

tain datasets, e.g., the synthetic dataset. Moreover, the pro-

posed approach suits FL better than general ML backdoor

defenses. It uses synthetic data for constraint optimization,

preserving local data independence, and periodic adjustment

of bounds is more efficient than parameter tuning or trigger

estimation strategies.

In summary, this paper presents the following contribu-

tions: (1) We introduce the first data-free defense strategy

against the novel backdoor attacks arising from the integration

of FMs into FL. (2) Extensive experiments in diverse FL sce-
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narios validate the effectiveness of our defense against both

novel and classic backdoor attacks, which are unified within

the proposed defense framework.

2. RELATED WORK

Vulnerabilities Introduced by FM integrated FL: The in-

teraction between FMs and FL enhances both domains [21]

but also introduces new attack vectors [22]. A common use

of FM-integrated FL is generating synthetic data for model

pre-training [23], knowledge transfer [6], and model aggrega-

tion [7]. However, FMs, especially LLMs with ICL ability,

are vulnerable to inference-time poisoning [24, 25, 26]. Re-

cent studies [9, 10] reveal a novel attack mechanism exploit-

ing this capability. The attacker uses malicious prompts to

embed a backdoor in LLM-generated synthetic data, which is

then transmitted to all FL clients during model aggregation,

compromising their integrity.

FL Defenses: The existing FL defenses[11, 27, 12, 13, 14,

15] primarily target client-originated threats and offer limited

protection against this attack approach. [11] applies a fixed

norm threshold to client updates in FL. [27] combines norm

thresholding of client updates with the injection of Gaussian

noise into the aggregated global model at the server end. [12,

13, 14, 15] selects the most reliable gradient update from

all participants to counter adversarial or faulty updates. [28]

employs federated aggregation of neuron activation values to

prune the least active neurons.

3. METHODOLOGY

3.1. FM integration in FL

Our work follows existing FM-integrated FL frameworks,

such as [21, 23]. An LLM on the server generates syn-

thetic data for model aggregation, including text data and

prompts guiding other FMs to produce data in formats like

images. Combined with classic frameworks like [7], the

FM-integrated FL cycle involves local client training, update

uploads, “Ensemble Distillation” based model fusion using

the synthetic data, and aggregated parameters distribution.

3.2. Threat Model and Assumptions on Defender

Our threat model aligns with the use of cutting-edge FMs ac-

cessed via APIs and focuses on classification tasks, which is

commonly studied in both backdoor and FL research.

Attacker’s knowledge: The attacker lacks access to the lo-

cal training set and process, distinguishing it from traditional

backdoor attacks. Instead, they exploit access to the server’s

LLM queries to insert malicious instructions, specifying the

trigger, target class, and demonstrations that show how the

attack is activated.

Attacker’s goals: The attacker aims to (1) direct the LLM

and other FMs to generate synthetic datasets with a percent-

age of backdoor poisoned samples, and (2) leveraging (1),

propagate the backdoor to all client models in FL, causing the

final model to misclassify triggered inputs to the target class

while maintaining high performance on clean samples.

Attack scenario: Given the diversity of LLMs and the goal

of improving outputs, users may rely on third-party services

for API integration and prompt engineering. In this case, the

attacker could be the service provider, thereby accessing the

user’s queries.

Defender’s knowledge: Like most FL defenses, this method

is server-side, with no access to clean local training sets or

processes. It assumes no knowledge of an attack, trigger type,

or target class, relying solely on local updates and the server’s

synthetic dataset.

Defender’s goals: The defender aims to counteract backdoor

attacks during FL training, ensuring the final model matches

clean model performance. Specifically, it should classify

backdoor-embedded inputs correctly while maintaining high

accuracy on clean samples.

3.3. Method

Existing defenses face challenges with the novel attack: (1)

Most FL defenses [11, 12, 14, 15, 13] detect anomalies in

client updates but are ineffective against novel attacks where

malicious updates may come from the majority of clients. (2)

General ML defenses need clean, real datasets, which contra-

dicts the decentralized nature of FL [16, 17]; (3) The ongoing

nature of FL makes repeated use of time-consuming ML de-

fenses like trigger estimation [18] impractical.

Given the unique attack mechanism and limitations of cur-

rent defenses, a feasible strategy is to periodically constrain

all client (malicious) updates on the server. Studies[19, 20,

17] show backdoor attacks often cause abnormally large ac-

tivations in hidden layers. Hence, malicious updates can be

mitigated by setting upper bounds on internal activations af-

ter client update aggregation, with the bounds optimized to

maintain model performance on certain datasets. To address

challenge 2, upper bounds optimization can be performed us-

ing the (possibly poisoned) synthetic dataset, preserving the

independence of local data and training in FL. This method

minimizes impact on the model’s classification ability with-

out altering underlying parameters. Additionally, periodically

adjusting these bounds is more efficient and practical than the

extensive parameter tuning or trigger estimation used in other

contexts, addressing challenge 3.

Now we elaborate on the server-side defense in FL. It is

implemented after the “Ensemble Distillation” based model

fusion using the synthetic data Dsyn
1. Let g(·|θ) denote the

L-layer model with parameters θ, derived from the model

fusion at FL round t2. We define the set K ⊆ {1, · · · , L}
to include all layers where bounds are applied, and the set

Z = {zk ∈ R
nk |k ∈ K} to encompass all vectors used to

1The processes of client local training and “Ensemble Distillation” based

model fusion, which remain unaltered, are not covered here. For details, refer

to [7]
2For clarity, we omit t in our notation.



constrain activations at layer k within K. Then the logit func-

tion for any class c ∈ C and any input x ∈ R
n0 with activation

bounds Z can be written as

gc(x;Z) = w
T
c (τL ◦ σL ◦ · · · ◦ τ1 ◦ σ1(x)),

where σl : R
nl−1 → R

nl is the composition of the weight and

activation function at the l-th layer of the model, wT
c ∈ R

nL

is the weight vector associated with class c, and τl(·) applies

upper bounds. For layer l ∈ K, τl(v) = min{v, zl}, applied

element-wise to the vectors; otherwise, τl(v) = v.

To ensure effective defense, activation upper bounds are

minimized to allow only legitimate activations through while

filtering out malicious ones. Since the defender lacks knowl-

edge of attack triggers and target classes, the optimization re-

lies solely on clean samples. Hence, one can minimize the

upper bounds so that the classification accuracy on clean sam-

ples exceeds a certain threshold.

However, in the defense scenario considered here, the de-

fender lacks access to clean, real data. Consequently, we ad-

just the optimization problem to align the logits of synthetic

data - with bounds applied - with those of the original model.

This approach helps preserve the effectiveness of the defense

and the model’s functionality as much as possible by: (1) opti-

mizing the bounds based on the model’s relative performance

on the synthetic data, thus avoiding reliance on absolute (pos-

sibly poor) classification accuracy on the synthetic data; and

(2) keeping the model parameters unchanged. Motivated by

the above, we optimize the upper bounds by minimizing the

following Lagrangian function:

H(Z, λ) =
∑

x∈Dsyn,c∈C

[gc(x;Z)− gc(x)]
2 + λ

∑

l∈K

‖zl‖2

For an effective defense, we dynamically adjust the La-

grangian multiplier λ during FL. Let the threshold ∆π repre-

sent the allowable drop in classification accuracy on synthetic

data. A lower threshold preserves performance but may miss

constraining misclassifications, while a higher threshold may

overly constrain. If the accuracy drop is below ∆π, we in-

crease λ by α to tighten bounds; if it exceeds∆π, we decrease

λ to relax the constraints.

Note that the classic backdoor attack is a special case

of the novel attack in our defense framework. Activation

bounds also suppress malicious updates from few compro-

mised clients. Moreover, after model fusion and activation

bounds optimization, only the model parameters are dis-

tributed to clients. Separating bounds from local training

prevents compromised clients from adapting to the bounds

and thus evading the defense. Additionally, only a few op-

timization iterations are needed to ensure effective defense,

efficiently securing the FL training process.

4. EXPERIMENT

4.1. Experimental Setup

Datasets and models: We use two benchmark datasets,

CIFAR-10 and CIFAR-100, for image classification [29].

CIFAR-10 has 60k 32×32 color images across 10 classes,

with 5k images per class for training and 1k per class for test-

ing, while CIFAR-100 includes the same number of images

across 100 classes, with 500 images per class for training

and 100 for testing. For the foundation models, we employ

GPT-4 to produce prompts guiding Dall-E to produce 10,000

synthetic data for each dataset, with an equal distribution

across all classes. For downstream models in FL systems,

we use ResNet-18 [30] with added linear layers to simulate

heterogeneous FL models.

FL settings: We consider both homogeneous (homo-FL)

and heterogeneous (hete-FL) federated learning settings,

along with cross-device and cross-silo scenarios. In the

cross-device scenario, 100 clients are available, with 10%

randomly selected for each global round. In the cross-silo

scenario, 10 clients participate in every round. In all FL

settings, we consider both IID (independent and identically

distributed) and non-IID local data, where non-IID is sim-

ulated using a Dirichlet distribution with β (the parameter

deciding the degree of data heterogeneity) set to 0.1.

Training settings: FL global rounds are set to 50, with 5

iterations for local training, ensemble distillation, and bound

optimization. A learning rate of 1 × 10−3 is used for local

training and 5×10−4 for distillation and bound optimization.

Attack settings: For the novel attack mechanism, we focus

on the classic backdoor attack BadNet[31]. For the classic

attack strategy, we also consider Blend[32], and SIG[33].

For all datasets, class 0 is chosen as the target class, and all

trigger-embedded instances are mislabeled as class 0. The

poisoning ratio for synthetic datasets is set to 20%, i.e., 20%

of instances per non-target class are embedded with triggers.

Defense settings: ResNet-18 consists of four stages of resid-

ual blocks, each composed of a series of convolutional layers.

To ensure the effectiveness and efficiency of the defense

method, we define K as the set of final layers from the four

stages of ResNet-18. The initial value of the Lagrangian mul-

tiplier λ is set to 1, and α is set to 1.1.

Evaluation metrics: We define accuracy (ACC) as the frac-

tion of clean test samples correctly classified, and Attack

Success Rate (ASR) as the fraction of backdoor-triggered

samples misclassified to the target class. The defense effec-

tiveness is evaluated by (i) the average ACC of client models

on their local test sets and (ii) the average ASR on trigger-

embedded test sets. A lower ASR indicates better defense,

while ACC should remain as close as possible to the model’s

original performance without defense.

Performance Evaluation: To demonstrate the effectiveness

of our defense, we compare its performance with other FL de-

fense methods, including NormThr[11], DP[27], Krum[12],

Clipcluster[13], SignGuard[14], RFOUT[15], and Prun-

ing[28]. For all defense methods, including ours, we ad-

just the hyperparameters so that the drop in ACC is within

∆π = 10%.



Data
Vanilla NormThr DP Krum ClipCluster SignGuard RFOUT Pruning Ours

ACC ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR

Cross-Silo

D1

IID 81.56 92.67 3.14 72.42 15.28 80.24 1.72 93.36 0.50 92.83 0.21 92.77 0.02 92.84 0.56 84.79 3.14 4.68

non-IID 94.33 90.43 0.74 71.13 18.45 69.27 44.44 83.70 0.28 89.40 0.20 89.80 0.29 90.43 0.67 62.98 0.16 19.15

D2

IID 37.90 88.99 3.46 70.13 15.90 67.18 1.14 87.09 0.08 89.00 0.00 88.99 0.12 88.98 1.22 77.84 4.70 8.34

non-IID 60.65 81.61 3.75 45.51 3.99 43.74 12.74 79.17 0.45 79.99 0.19 81.12 0.02 81.50 1.89 64.85 4.60 2.47

Cross-Device

D1

IID 63.92 96.31 4.41 95.53 6.41 96.29 0.30 96.32 0.12 96.37 0.02 96.39 0.24 96.35 0.56 84.79 4.08 11.81

non-IID 88.26 92.90 12.90 89.50 16.93 90.16 17.05 92.74 10.07 95.92 0.38 92.92 0.06 92.72 1.48 71.60 1.75 19.67

D2

IID 20.30 90.96 2.55 82.18 11.40 82.20 1.30 89.57 0.52 90.94 0.36 90.98 0.44 90.94 0.70 83.79 2.66 13.98

non-IID 53.06 89.24 3.39 55.29 3.66 53.90 11.68 79.59 0.29 89.13 0.08 89.20 0.09 89.17 0.15 64.78 2.45 8.91

Table 1. Defenses against the novel backdoor attack in homo-FL. D1: CIFAR-10, D2: CIFAR-100

Data
Vanilla NormThr DP Krum ClipCluster SignGuard RFOUT Pruning Ours

ACC ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR ACC↓ ASR

Cross-Silo

D1

IID 79.52 93.36 3.28 77.39 16.22 87.35 0.52 93.74 1.22 93.47 0.34 93.75 0.40 93.74 2.90 72.55 2.46 5.98

non-IID 94.31 91.56 1.48 87.54 3.64 87.60 31.58 89.02 0.36 89.30 0.32 90.98 0.21 91.03 0.69 64.73 0.00 20.17

D2

IID 36.52 89.31 3.76 69.82 14.70 64.65 0.10 87.96 1.58 89.35 0.80 89.22 0.48 89.26 1.14 81.05 3.80 9.92

non-IID 61.83 84.19 3.92 55.04 4.15 51.78 6.04 85.92 1.52 84.24 0.27 84.76 0.14 64.77 1.12 71.01 4.18 3.36

Cross-Device

D1

IID 63.48 96.44 4.00 95.55 7.20 95.95 5.20 96.40 4.48 95.37 0.10 96.46 0.10 96.38 1.72 87.19 2.06 16.57

non-IID 87.17 92.22 6.78 88.86 5.23 89.42 22.84 91.55 14.73 95.66 0.38 92.33 0.34 92.41 2.21 72.91 1.41 23.13

D2

IID 21.24 90.90 3.70 80.34 9.60 81.95 0.75 89.04 0.10 90.93 0.02 90.95 4.24 92.81 0.74 84.06 3.38 14.17

non-IID 52.76 89.02 3.95 58.92 4.57 58.96 8.94 83.28 0.12 89.16 0.34 93.00 0.24 89.12 0.44 62.22 1.45 9.69

Table 2. Defenses against the novel backdoor attack in hete-FL. D1: CIFAR-10, D2: CIFAR-100

Attack
Vanilla Ours

IID non-IID IID non-IID

ACC ASR ACC ASR ACC↓ ASR ACC↓ ASR

No Attack 81.36 - 94.53 - 1.48 - 0.24 -
BadNet 82.54 96.50 94.57 60.38 3.50 29.25 0.69 30.08
Blend 82.04 90.04 95.07 92.36 6.80 41.27 1.43 37.36
SIG 81.46 85.42 93.97 73.52 6.36 22.43 2.14 36.34

Table 3. Proposed defense against classic backdoor attacks

on CIFAR-10 in cross-silo homo-FL.

4.2. Experimental results

Against Novel Backdoor Attack. The vanilla FM-FL sys-

tem is highly vulnerable to the novel backdoor attack across

all FL settings and datasets. As shown under “Vanilla” in

Table 1 and Table 2, the ASRs exceed 90% in all settings,

while the ACCs remain at reasonable levels. As expected,

existing defense methods, including NormThr, DP, Krum,

ClipCluster, SignGuard, RFOUT, and Pruning, show lim-

ited effectiveness against this threat. While they slightly re-

duce ACC on clean samples, they fail to significantly miti-

gate the attack, as ASRs remain high, often close to those

of the vanilla models. In contrast, our method offers an ef-

fective defense against the novel attack. Under the proposed

defense for homo-FL (shown in Table 1), the drop in ACC

(denoted as ACC↓) is less than 5% in all cases. We reduce the

ASR to below 15% for IID datasets and below 20% for non-

IID datasets, indicating that neither the number of clients nor

the degree of data heterogeneity significantly impacts defense

performance. Our method achieves similarly strong results in

hete-FL (as shown in Table 2), demonstrating that it general-

izes well across various FL settings and data distributions.

Against Classic Backdoor Attack. Table 3 demonstrates the

effectiveness of our defense method against classic backdoor

attacks, including BadNet, Blend, and SIG, in the homo-FL

cross-silo setting on CIFAR-10. To ensure the attacks remain

potent, we compromise two clients and adjust the attack hy-

perparameters, resulting in most ASRs above 85% for vanilla

models. In most cases, our method reduces the ASR by more

than 50%, while keeping the ACC drop below 10%. The

method demonstrates robustness across various attack strate-

gies and FL settings, highlighting its applicability in defend-

ing against a wide range of backdoor threats in FL systems.

Applied in non-attack setting. Since our defense method

does not assume the presence of an attack, we also evaluate

its performance in clean (attack-free) settings, as shown un-

der “No Attack” in Table 3. The drop in ACC is within 2%

in the homogeneous cross-silo FL setting, demonstrating that

our method minimally impacts model performance in the ab-

sence of an attack.

5. CONCLUSION

This paper introduces the first data-free defense strategy to

address emerging backdoor threats resulting from the integra-

tion of FMs into FL. Within the proposed defense framework,

novel and classic FL backdoor attacks are unified. Extensive

experiments conducted across diverse FL scenarios validate

the effectiveness of our defense method, demonstrating its ro-

bustness and applicability in various contexts.
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