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ABSTRACT

Numerous studies have assessed the proficiency of AI systems, particularly large
language models (LLMs), in facilitating everyday tasks such as email writing,
question answering, and creative content generation. However, researchers face
unique challenges and opportunities in leveraging LLMs for their own work, such
as brainstorming research ideas, designing experiments, and writing or reviewing
papers. In this study, we introduce AAAR-1.0, a benchmark dataset designed
to evaluate LLM performance in four fundamental, expertise-intensive research
tasks: (i) EQUATIONINFERENCE, assessing the correctness of equations based
on the contextual information in paper submissions; (ii) EXPERIMENTDESIGN,
designing experiments to validate research ideas and solutions; (iii) PAPERWEAK-
NESS, identifying weaknesses in paper submissions; and (iv) REVIEWCRITIQUE,
identifying each segment in human reviews is deficient or not. AAAR-1.0 differs
from prior benchmarks in two key ways: first, it is explicitly research-oriented,
with tasks requiring deep domain expertise; second, it is researcher-oriented, mir-
roring the primary activities that researchers engage in on a daily basis. An
evaluation of both open-source and closed-source LLMs reveals their potential
as well as limitations in conducting sophisticated research tasks. We will re-
lease the AAAR-1.0 and keep iterating it to new versions. Project Webpage:
https://renzelou.github.io/AAAR-1.0/

1 INTRODUCTION

Although AI has brought transformative changes to various aspects of life, its impact on researchers
unfolds in a nuanced manner. On the one hand, AI assists in various research disciplines, such as
Social Science (Neuman et al., 2023), Finance (Gu et al., 2024), Medicine (Rakhimov et al., 2022),
GeoScience (Praskievicz, 2018), etc., significantly expediting academic processes. However, many
of these applications are superficial, often limited to data-driven clustering or classification. On
the flip side, the AI era poses challenges for researchers. Despite its ability to streamline some
activities, researchers still face demanding, cognitively intensive tasks such as staying current through
extensive paper reading, rapidly generating ideas in response to fast-paced advancements, conducting
rigorous experiments to substantiate claims, and managing an increasing volume of peer reviews.
Then a question looms: How effectively can AI assist researchers in tasks that are domain-specific,
expertise-demanding, and reasoning-intensive?

Existing works proved the promising potential for using LLMs in assisting AI research. Si et al.
(2024) conducted a large-scale human study and found that LLMs can generate creative research ideas.
Lu et al. (2024) proposed an autonomous agent to handle complicated research workflow and write a
whole research paper. However, most of these works focus on addressing highly subjective problems
that require a high degree of expertise, making evaluation laborious and hard to reproduce. This
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This paper proposes an algorithm 
[…], the result z is defined as below:
 z = 
where W is the parameter, a and b 
are the […]
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for the robustness of  […]
    In the below sections, we conduct 
the experiments 
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Task Instruction
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Task Instruction

Paper Context

Paper Context

Task Instruction

1. Compare performance on […]
2. Ablation study with […]
3. Significance test […]

1. To prove the effectiveness[…]
2. To study the impact of […]
3. To avoid randomness in […]

Experiment Plan

Motivation Explanation

Weaknesses
Answer

Given the context of a paper, identify the missed 
equation from the provided options (A, B, C, D).

Given a paper, critique the weaknesses 
within this research work.

Title: Metric is All You Need
Abstract: Deep learning has been […]
Introduction: We propose a […]

Given a partial paper, create a brief 
experiment plan and explanations.

Task #1: Equation Inference

Task #2: Experiment Design

Task #3: Paper Weakness
Task Instruction

Given a paper, along with a review point, decide 
whether this review point is reliable or not.

Paper Context

Title: Metric is All You Need
Abstract: Deep learning […]
Introduction: We propose a […]

This paper lacks 
novelty […]

Review

Task #4: Review Critique

This review comment is unreliable because […]

Reliability Decision

Figure 1: The input-output illustration of four tasks in the proposed AAAR-1.0 benchmark.

underscores the need for a comprehensive benchmark that rigorously assesses LLMs’ capabilities in
expertise-intensive research activities.

To this end, in this work, we introduce AAAR-1.0, a novel benchmark that aims to comprehensively
assess the LLMs’ capacity on expert-level research tasks. As illustrated in Figure 1, AAAR-1.0 de-
composes four distinct expert-level AI research tasks from the researcher’s daily activities, including
i) EQUATIONINFERENCE, investigating whether the LLMs can infer the equation correctness based
on the paper context; ii) EXPERIMENTDESIGN, validating LLMs’ ability on designing reliable
experiments for a research idea; iii) PAPERWEAKNESS, testing the quality of weaknesses discovered
by LLMs from paper drafts; and iv) REVIEWCRITIQUE, investigating whether LLMs can identify
and explain the deficient/unreliable human-written paper reviews. To ensure data quality, senior AI
researchers with extensive domain expertise perform data annotation for AAAR-1.0, followed by
rigorous multi-round data examination and filtering. All four tasks require models to possess strong
domain knowledge covering various cutting-edge research findings, as well as expert-level research
experience, to the extent that even humans need substantial research accumulation to tackle the tasks
we designed. Crucially, tasks here are singular, stand-alone challenges (with clear input and output
expectations) rather than a complicated task chain (Li et al., 2024; Lu et al., 2024), providing a more
transparent assessment of the model’s intermediate output.

Benefiting from the proposed automatic metrics, we conduct extensive experiments across numerous
mainstream LLMs, where we find that:

• With a random guess baseline of 25%, the performance of most LLMs on EQINFER hovers just
slightly above chance, with the top models reaching around 60%. This highlights the difficulty
of the task, despite its reliance only on local context reasoning.

• In EXPDESIGN, LLM-designed experiments are innovative and more diverse than those by hu-
mans; however, many are trivial, lack feasibility, and stray from the original research objectives.

• In PAPERWEAKNESS, LLM-identified weaknesses often lack depth and specificity, making
them broadly applicable and less useful for providing feedback on paper drafts.

• In REVIEWCRITIQUE, LLMs struggle to effectively identify deficient human reviews, indicating
limited usefulness in assisting meta-reviewers in evaluating the quality of individual paper
reviews.
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Figure 2: Data construction workflows of the three tasks in AAAR-1.0.

2 RELATED WORK

LLMs for AI Research. With the rapid evolution of pertaining techniques, LLMs are found to be
useful in assisting various research disciplines (Yu et al., 2024; Labrak et al., 2024), particularly in AI
research, such as generating novel research ideas (Kumar et al., 2024), reviewing research draft (Gao
et al., 2024; Du et al., 2024; Liang et al., 2024), and writing scientific papers (Chamoun et al.,
2024; Lu et al., 2024). For example, Si et al. (2024) conducted a large-scale human investigation on
LLM-generated research ideas and found that LLMs can generate novel ideas compared with humans
while lacking feasibility. Du et al. (2024) found that while LLMs are effective at summarizing papers,
they tend to overly trust the authors’ claimed strengths and struggle to identify weaknesses specific to
the paper. Furthermore, some works try to employ LLMs to solve more complicated research tasks
that are composed of multiple steps (Li et al., 2024; 2023; Tang et al., 2023). Notably, Lu et al. (2024)
proposed AI-SCIENTIST, an autonomous agent framework that can handle a series of challenging
research tasks consecutively, including generating research ideas, coming up with the corresponding
experiments along with the implementations, and then writing the final research paper — exactly how
human conduct a whole research pipeline. However, there is still a lack of systematic evaluations
and quantitative analyses on the LLMs’ (intermediate) output of each single-step research task. Our
work focuses on building a benchmark that has individual research steps with clear input-output
expectations, thus making it suitable for comprehensive LLMs evaluation.

Benchmarks for AI Research Tasks. Existing “LLM assists research” benchmarks mainly focus
on the implementation and execution part of the research pipeline (Lu et al., 2024; Chen et al.,
2024b; Li et al., 2024). For instance, Huang et al. (2024) proposed MLAgentBench to test the LLMs’
capacity for writing project code and training the ML models, where the evaluation metric is the test
performance of the models trained by LLMs. However, real-world AI research activities are diverse
and some of them are hard to assess for quality, such as generating research ideas, which requires
intensive manual assessment (Si et al., 2024; Liang et al., 2024), or LLM-based estimation (Lu et al.,
2024). Our work centers on tasks that emphasize a comprehensive mastery of the scientific research
field and core elements of a researcher’s daily workload, and we try to build curated task-specific
metrics for every single task for a more efficient and accurate LLMs appraisal.

3 AAAR-1.0

Figure 2 provides an overview of the construction process of AAAR-1.0. In the following sections,
we elaborate on the data collection details of the aforementioned four tasks, including § 3.1 EQUA-
TIONINFERENCE ( EQINFER ), § 3.2 EXPERIMENTDESIGN ( EXPDESIGN ), § 3.3 PAPERWEAK-
NESS ( WEAKNESS ), and § 3.4 REVIEWCRITIQUE .
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3.1 EQUATIONINFERENCE

Crafting a correct scientific equation in paper writing or validating an equation in paper reviewing
is challenging, as it requires a thorough understanding of an algorithm or the intricate relationships
among numerous variables. Directly prompting LLMs to generate equations proves overly demanding.
Therefore, this work formulates EQINFER (Figure 1) as as a multiple-choice equation inference
task based on contextual cues, curated as follows.

① Data crawling and cleaning. For the data source, we adopt the pre-compilation LaTeX code
for two reasons: i) existing PDF parsing tools, such as PyMuPDF and PaperMage (Lo et al., 2023),
can introduce considerable noise to the parsed equation text; ii) considering most of exiting LLMs
are capable with processing LaTeX code, using LaTeX source instead of parsed text can be more
accurate and provide LLMs with richer information. Meanwhile, to avoid using any low-quality
human-written equations, we only crawl those peer-reviewed papers accepted by top-tier conferences.
Accordingly, we first obtain the accepted paper list from ACL Anthology, from year 2019 to 2023.
Next, we search each paper on arXiv to crawl its LaTeX source (if it exists). Finally, we get a total of
1,762 papers’ source LaTeX packages.

We then clean the LaTeX sources by deleting all the comments and combining multiple cross-referred
.tex files into a main file. Afterwards, we use regex to randomly extract (at most) 3 equations’ code
snippets per paper, finally resulting in 3,877 human-written equations are extracted.

② LLM-based equation synthesis. As we formulate this task as classification, for each human-
written positive equation, we have to craft at least three counterpart negative equations. To this
end, we prompt GPT-4 to synthesize more equations based on the paper context. For each positive
equation, we repeat this prompting (with a high decoding temperature) until three different negative
equations are synthesized.

③ LLM-based filtering. However, the LLM-synthetic equations can sometimes be context-
unaligned, i.e., some synthesized equations contain notations that are never defined in the paper
context, which is a superficial shortcut for the classification tasks. To improve the data quality, we
prompt GPT-4 to identify those context-unaligned negative equations. We then discard those instances
where all three negative equations are identified as contextually unaligned. This filtering leads to a
final of 1,449 classification instances (62.3% instances are filtered).

④ Expert-based examination. Furthermore, it’s also possible that synthesized negative equations
are actually correct (i.e., false negative options) — even if the negative and positive equations are
written differently, the final compiled results might be the same. To filter out the false negative
equations and to have a final check on the classification instances, we then employ human experts to
conduct a further data review.

We asked 5 senior Ph.D. students who are experienced in AI research to manually check all the
instances. For each classification instance, we ask those human experts to consider the following
criteria: i) Are all four equations (both positive and negative) grammatically correct? ii) After
compilation, is there only one correct answer? We ask every human expert to use external LaTeX
compilation tools (e.g., TeXlive), and identify the instances that cannot meet the criteria. Each
instance is examined by at least two experts, and we only keep instances that all experts decide to
keep. After this strict examination, a total of 1,049 instances are eventually kept (27.6% instances are
filtered)

Final data. We finally shuffle the four equations for each classification instance and randomly
assign letters (A, B, C, and D) to the equations. We show the data statistics of the final EQINFER in
Table 11 and the sample data cases in Figure 7.

3.2 EXPERIMENTDESIGN

Given a research topic, such as a novel ML algorithm, a qualified researcher can design a solid
experiment plan for it, and clarify underlying motivation to ensure the reliability of the designed
experiment. Unlike the concurrent works that focus on the experiment implementation (Lu et al.,
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2024; Huang et al., 2024), we emphasize the importance of assessing the high-level experiment
design of LLMs before the subsequent implementation to avoid any expensive execution iteration.
Therefore, as shown in Figure 1, we formulate EXPDESIGN as a text-generation task that takes
pre-experiment paper context as input, and then generates the experiment and explanation list.

① Data crawling. As for the data source, we first collect ≥ 10k papers’ data from arXiv, including
LaTeX sources and PDFs, which cover broad AI categories, including cs.AI, cs.CL, and cs.CV,
from year 2018 to 2023. Similarly, to ensure the source data quality, we only use papers that have
appeared at well-known conferences.

② Domain-expert annotation. Making a reliable and executable experiment plan requires solid
foundation knowledge of a specific research area. Consequently, we set a high standard for choosing
annotators: i) be a senior Ph.D. student with at least one peer-reviewed publication in leading AI
venues; ii) have more than 4 years of AI research experience; iii) frequently serve as conference
reviewers. Finally, we invite a total of 10 qualified experts to participate in our data collection
procedure. Given the 10k crawled papers, we first ask every annotator to bid on the papers that they
are interested in. After bidding, each of them is assigned 10 papers, i.e., a total of 100 papers to be
annotated. During annotation, we post each paper PDF on online Google Drive and ask the annotator
to first carefully read the whole paper. Then, we ask them to identify and locate the key experiments
in each paper (i.e., highlighting the relevant paragraphs of each experiment). We don’t consider some
trivial experiments, such as those supplemental analyses in the appendix section. For each identified
experiment, the annotator has to concisely answer two questions: i) What did this experiment do?
ii) Why did the paper authors conduct this experiment? In other words, we ask the annotator to
summarize all the key experiments in this paper and explain the underlying motivations based on
their rich domain experience.

③ Multi-round peer discussion. Intuitively, different experts might have different opinions on
the same research topic. Particularly, when explaining the underlying motivation of an experiment,
adopting only a single expert’s opinion might introduce bias to our annotation. Hence, we conduct a
further multi-round peer discussion. For each online paper PDF, where all the key experiments are
identified, summarized, and explained, we ask a different expert (reviewer) to review the annotation by
considering the following three criteria: i) Are the identified experiments all the key experiments?
ii) Does each experiment summarization covers all key information? iii) Does each explanation
sound reasonable and reliable? Each reviewer has to leave comments to the online PDF regarding
the above criteria, and then the annotator has to respond to each comment — either accept the
suggestion and revise the previous annotation, or provide a “rebuttal” to the reviewer to uphold the
annotation. This discussion iterates until both opinions align with each other. Eventually, for each
paper, we collect two lists: i) the experiment list, summarizing each experiment step of the paper; ii)
the explanation list, the underlying motivations that are one-one corresponding to the experiment.

Final data. After annotation, we use the pre-experiment context of each paper (according to the
first-experiment location identified by the annotator) as the input. Furthermore, we use GPT-4 to
delete any sentence that potentially leaks the experiment from the input.1 Similar to the EQINFER,
we utilize the source LaTeX as the input text to avoid PDF paring noise. As for the image input, we
collect those figures within each paper’s source LaTeX package and only keep figures that are used in
the pre-experiment context. Overall, a total of 100 instances are collected. As shown in Figure 1,
the input of each instance is the pre-experiment context (including the figures), and the ground-truth
output is the expert-annotated experiment plan and the explanations. Table 12 shows data statistics
and Figure 8 illustrates the sample case in EXPDESIGN.

3.3 PAPERWEAKNESS

Another critical research task is paper review. Previous works have demonstrated the usefulness of
the LLM-based review feedback (Gao et al., 2024; Jin et al., 2024; Lu et al., 2024). However, as
indicated by Du et al. (2024); Liang et al. (2024), LLMs only excel at summarizing the research
strengths while falling significantly short on weakness criticism. Hence, we build WEAKNESS for
particularly investigating the LLM-generated weaknesses.

1About 9.8% sentences are deleted.
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① Data crawling. We first crawl a total of 3,779 anonymous submissions of ICLR 2023 from
OpenReview,2 including PDF and other meta information (e.g., scores, decisions, and tracks). As the
ICLR 2023 has 13 distinct tracks while the paper distribution across different tracks is highly biased,
we then uniformly sample papers from different research tracks to improve the domain diversity.
Meanwhile, during sampling, we also keep the accept/reject papers distributed equally to avoid data
bias. In a word, we finally collect a total of 1,000 papers (500 accepted; 500 rejected), uniformly
covering all 13 tracks. Please refer to Figure 5 for the track and score distribution of the 1,000 papers.

② Extraction of human-written weaknesses. Since the raw comments crawled from ICLR 2023
are mixed with both strengths and weaknesses, we further employ GPT-4 to extract all the weaknesses
from each reviewer’s comments and compose multiple weaknesses into a list. Notably, we force
GPT-4 to keep the original text of the reviewer, i.e., all weaknesses in our dataset are those original
sentences written by the reviewer without any modifications.3 What’s more, sometimes one reviewer
might repeatedly mention the same weakness throughout the comment. In this case, we simply keep
all the repeated weaknesses because, if one weakness is repeatedly mentioned by the reviewer, it’s
intuitively an important weakness that the reviewer wants to emphasise; accordingly, keeping the
repeat items can penalize LLMs more on missing this weakness.

For each paper, we can finally get multiple weakness lists (one weakness list per reviewer, one paper
can have multiple reviewers). We further delete a few papers without any weaknesses found in the
raw comments, resulting in a total of 993 instances, i.e., 993 {paper, weakness lists} pairs.

③ Input data processing. As we mentioned before, we crawl papers from OpenReview instead of
arXiv because the under-review paper draft is required for this task. However, not every paper from
OpenReview can be found on arXiv, i.e., the source LaTeX code and figures of most under-review
papers are unavailable. Therefore, we utilize VILA (Lin et al., 2023) to parse text data out from the
PDF; we also employ PDFFigures-2.0 (Clark & Divvala, 2016) to extract all the figures and tables (in
image) from the paper, as Vila is not good at processing the table data.

Final data. Our final data is composed of 993 instances, each input is paper text along with
figure/table images, and each output is peer reviewers’ weakness lists. Table 13 shows data statistics;
Figure 9 presents an example of the data instances. We show the data diversity (score and track
distribution) in Figure 5.

3.4 REVIEWCRITIQUE

In addition to identifying weaknesses in paper drafts, a more challenging research task that requires
more senior research experience is conducting meta-reviewing. Given a paper submission, along
with individual reviews and author rebuttals, meta-reviewing is not to summarize individual reviews.
Instead, a meta-reviewer must go through all the information and make a final recommendation. This
requires the meta-reviewer to identify deficient/unreliable review segments (e.g., if a viewpoint is
too subjective or contains factual errors) in each individual review and make a decision based on the
non-deficient ones. This task demands years of experience in the relevant domain; even for human
experts, only senior researchers are typically qualified for meta-reviewing. Therefore, as illustrated in
Figure 1, we also investigate how LLMs assist meta-reviewers, specifically in identifying deficient
review points.

We reuse the REVIEWCRITIQUE dataset from our recent work (Du et al., 2024), where we crawled
papers’ initial submissions along with their reviews from OpenReview and employed more than
40 AI research experts to label each review segment (i.e., deficient or not), with detailed human
explanations. In total, there were 100 papers with 380 human reviews. Each review was divided into
sentence-level segments, resulting in 11,376 review segments (viewpoints).

2We adopt ICLR because it releases full submissions, while some other conferences only release accepted
papers.

3We manually checked GPT-4’s extraction results of 200 cases — GPT-4 only missed ≤1% of reviewer-
written weaknesses and maintained almost all the original text.
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4 EVALUATION CRITERIA

For EQINFER , we adopt accuracy as the classification criterion. For EXPDESIGN and WEAKNESS,
since both tasks have natural language outputs, semantic-based metrics are necessary. Hence, in
addition to the conventional ROUGE (Lin, 2004), we also develop several novel similarity-based
metrics for each specific task.

When evaluating the experiment plan list of EXPDESIGN , we hope the LLMs can mention as
many similar experiment steps as the expert’s plan. Nevertheless, we also don’t expect LLMs to
generate too many irrelevant or redundant steps in the plan. This intuition covers both the “recall”
and “precision” aspects. Therefore, we develop semantic similarity-based F1 score, denoted as S-F1,
which is the harmonic mean of S-Precision and S-Recall:

S-Precision =
1

m

m∑
i=1

max
j

sim(pi, gj) (1)

S-Recall =
1

n

n∑
j=1

max
i

sim(gj , pi) (2)

where the p and g represent the LLM’s prediction plan and the ground-truth plan, respectively. The m
and n are the list length of p and g (e.g., m experiment steps in p). We use SentenceBERT (Reimers,
2019) to measure the semantic similarity between the pi step and the gj step.

Meanwhile, S-F1 omits the item order difference of two lists, but when giving same-length lists
(items have one-one correspondence), we can utilize the following similarity-based matching score:

S-Match =
1

m

m∑
i=1

sim(pi, gi) (3)

Unlike EXPDESIGN, the output of WEAKNESS is multiple reviewers’ weakness lists, which means
we have to measure LLM’s single prediction list with a “nested” list. Hence, we rewrite S-Precision ,
S-Recall to SN-Precision , SN-Recall:

SN-Precision =
1

m

m∑
i=1

(
1

r

r∑
k=1

max
j

sim(pi, g
k
j )

)
(4)

SN-Recall =
1

r

r∑
k=1

(
1

nk

nk∑
j=1

max
i

sim(gkj , pi)

)
(5)

where r is the number of reviewers of the given paper, nk means the length of k-th reviewer’s
weakness list, and gkj indicates the j-th item in k-th reviewer’s weakness list.

Additionally, in the real world, we would think a review weakness is reliable if it is specific to a
paper. Meanwhile, we also hope the review is informative, i.e., no excessive similar weaknesses in
one review. Therefore, we adopt the following ITF-IDF metric proposed by Du et al. (2024), which is
inspired by the classic TF-IDF:

ITF-IDF =
1

w

w∑
j=1

(
1

mj

mj∑
i=1

log

(
mj

Oj
i

)
× log

(
w

Rj
i

))
(6)

Oj
i =

mj∑
k=1

sim(pji , p
j
k) (7)

Rj
i =

w∑
l=1

max
s

sim(pji , p
l
s) (8)

where the w is the total number of papers in the dataset, pj is j-th paper’s prediction weakness list, pji
is the i-th weakness in pj . Moreover, Oj

i calculates the intra-paper occurrence frequency of pji ; Rj
i is

the “soft” number of papers that also contain the pji , which is computed by summing the maximum

7



Table 1: Various LLMs’ performances on the 1,049 instances of EQINFER task.

Methods Accuracy (%)

Random Guess 25.00
Open-source LLMs

Gemma 2-27B (Gemma Team, 2024) 3.24
Falcon-40B (Almazrouei et al., 2023) 4.39
OLMo-7B (Groeneveld et al., 2024) 19.00
Mistral-7B (Jiang et al., 2023) 22.21
Qwen 2.5-72B (Qwen Team, 2024) 35.93
Mixtral-8x22B-MoE (Jiang et al., 2024) 37.08
Llama 3.1-70B (MetaAI, 2024) 38.13

Closed-source LLMs
Gemini 1.5 Pro (Anil et al., 2023) 34.31
GPT-4o (OpenAI, 2024a) 43.18
GPT-4 (OpenAI et al., 2023) 49.85
o1-preview (OpenAI, 2024b) 59.49
Claude 3.5 sonnet (Anthropic, 2024a) 61.10

similarity scores between pji and other paper’s weaknesses. In a word, Oj
i measures informativeness,

and Rj
i measures specificity. The complete ITF-IDF consider both aspects and reflects the overall

weakness diversity.

For REVIEWCRITIQUE , we use F1 score as the classification metric; while for the deficiency
explanation, we use ROUGE (Lin, 2004) and BERTScore (Zhang et al., 2020) to reflect how well the
model-generated explanation aligns with the expert’s annotation.

5 EXPERIMENTS AND ANALYSES

In this section, we conduct extensive experiments on AAAR-1.0, across various mainstream LLMs,
to quantify the current LLMs’ capacity to tackle high-level research tasks. Specifically, § 5.1 for
EQINFER , § 5.2 for EXPDESIGN , § 5.3 for WEAKNESS , and § 5.4 for REVIEWCRITIQUE .

Please refer to Appendix B.2 for running details of the LLMs.

5.1 EQUATIONINFERENCE

100 300 500 700 900 1,100 1,300 1,500
Input Context Length (# of Words)

25.0
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30.0
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37.5
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42.5
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A
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GPT-4o
GPT-4-Turbo
Qwen-2.5
Llama-3.1

Figure 3: The input context length scaling trend
on the EQINFER task.

Settings. As different LLMs have distinct con-
text windows, to ensure a fair comparison, we fix
the maximum input length for all models. Ac-
cording to the data statistics of Table 11, we em-
pirically use 1,000 words for both contexts before
and after equations, i.e., 2,000 surrounded words.

Main results. Table 1 shows the main results.
Firstly, the open-source LLMs, especially the
Falcon and Gemma, perform unexpectedly dis-
appointing (even worse than random guesses).
These screwed scores are mainly due to the poor
long-context instruction following ability, where
we find some open-source LLMs are confused
with the massive input and often copy the LaTeX code from the input. In contrast, closed-source
LLMs generally achieve superior accuracy, probably owing to the richer scientific knowledge from
the larger model parameters. However, considering the conventional multi-choice QA formulation
of EQINFER, the recently-released GPT-4o solely gets 43.18, implying the unique challenge of
EQINFER compared with other scientific QA benchmarks (Song et al., 2023). Notably, with the help
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Table 2: Various LLMs’ performances on the 100 instances of EXPDESIGN . The explanation
generation is based on the oracle experiments to prevent error propagation. “Copy Input” is a random
baseline: for experiment design, randomly select 5 sentences from the input paper; for experiment
explanation, directly copy each experiment idea.

Experiment Design Experiment Explanation
Methods S-F1 S-Precision S-Recall S-Match ROUGE-L ROUGE-1

Copy Input 21.13 17.94 26.76 40.32 22.06 25.28
Open-source LLMs

OLMo-7B (Groeneveld et al., 2024) 33.94 37.25 31.79 45.78 26.30 30.38
Falcon-40B (Almazrouei et al., 2023) 17.87 21.78 15.35 17.03 12.10 12.72
Gemma 2-27B (Gemma Team, 2024) 34.33 39.71 30.51 42.77 26.20 29.63
Mistral-7B (Jiang et al., 2023) 37.62 43.09 34.19 50.18 30.20 34.69
Mixtral-8x22B-MoE (Jiang et al., 2024) 42.21 50.13 36.82 49.07 29.96 34.53
Llama 3.1-70B (MetaAI, 2024) 40.57 48.43 35.43 50.05 29.33 34.11
Qwen 2.5-72B (Qwen Team, 2024) 43.24 51.73 37.55 51.12 29.46 34.68

Closed-source LLMs
Gemini 1.5 Pro (Anil et al., 2023) 51.87 50.77 53.37 52.87 28.52 33.80
Claude 3.5 sonnet (Anthropic, 2024a) 48.74 46.49 51.53 53.03 18.75 26.15
GPT-4 (OpenAI et al., 2023) 43.89 42.34 45.82 55.03 22.82 30.01
GPT-4o (OpenAI, 2024a) 53.00 51.24 55.12 54.79 27.54 34.31
o1-preview (OpenAI, 2024b) 46.67 45.04 48.70 58.55 29.11 36.70

of internal CoT, o1 gains stronger performances than GPT-4/GPT-4o, indicating the potential benefits
of adopting reasoning for this task.

Q: Do more contexts boost performance? Table 1 unifies the input context lengths to 1,000 tokens
for various LLMs. To answer this question, we experiment with long-context LLMs to investigate
the impact of the input context lengths. Particularly, we scale the input length (per side) from 100 to
1,500 words. As shown in Figure 3, for the open-source LLMs (Llama and Qwen), after 300 words
length, increasing the input context doesn’t help the performance and even significantly drops Qwen’s
scores. While for the closed-source GPT-4-Turbo and GPT-4o, scaling up input length gradually
boosts the performances at the first 1,000 words, but stabilizes afterwards. This is in line with human
intuition, i.e., surrounding context is required for the equation inference, as the adjacent context
usually provides important information, such as the target algorithm description or the notation
definition. However, after exceeding a specific threshold, more context information is not beneficial
anymore and even confuses those LLMs with poor long-context handling capacity (Wang et al., 2024;
Liu et al., 2024).

5.2 EXPERIMENTDESIGN

Settings. Similarly, we unify the input context length of different LLMs to ensure a fair comparison.
According to Table 12, we set 2,000 and 3,000 input words for open- and closed-source LLMs,
respectively. Meanwhile, as experiment explanation is the subsequent task of experiment design,
using model-generated experiments can propagate errors in explanation, leading to inferior results for
most LLMs. To this end, we provide LLMs with the oracle experiments when generating explanations.

Main results. Table 2 shows the main results. For the experiment design, the closed-source LLMs
generally outperform open-source LLMs, and both closed-/open-source LLMs are superior to the
“Copy Input” baseline (except the Falcon). Despite the higher S-Precision, the open-source LLMs
are seriously deficient in S-Recall compared with closed-source LLMs (∼10%↓). We find that
closed-source LLMs are more creative in experiment design and tend to generate more experiment
ideas than open-source LLMs (though most of the experiment ideas are trivial), leading to excellent
S-Recall. As for the experiment explanation, the S-Match scores of closed-source LLMs still surpass
the open-source LLMs, while the score difference is not significant. Furthermore, we find the negative
correlation between S-Match and the ROUGE, where the ROUGE scores of closed-source LLMs are
broadly inferior. We find that the open-source LLMs often try to copy the terms or phrases from the
given experiment, or even simply paraphrase the experiment instead of explaining, which results in a
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Table 3: The impact on S-Match scores of maintaining the experiment’s self-containment for
EXPDESIGN .

Models One-by-One Whole-List

Llama 3.1-70B 50.05 49.36 (↓ 0.7)
Qwen 2.5-72B 51.12 48.56 (↓ 2.6)

Gemini 1.5 Pro 52.87 57.48 (↑ 4.6)
Claude 3.5 sonnet 53.03 59.11 (↑ 6.1)
GPT-4 55.03 56.95 (↑ 1.9)
GPT-4o 54.79 58.54 (↑ 3.8)
o1-preview 58.55 61.58 (↑ 3.0)

high superficial overlap with the ground-truth explanation. This observation highlights the importance
of adopting the proposed S-Match to avoid evaluation bias of traditional generation metrics.

Q1: Can self-contained experiment design enhance the experiment explanation? When gen-
erating the explanation in Table 2, we provide LLMs with each individual experiment and let them
explain one by one, because we find that, when providing the whole experiment list, those open-
source models only explain partial experiments because of their poor instruction-following capacity.
However, there are intuitively some semantic or logical relations between different experiments, e.g.,
some experiments are prerequisites to others. Therefore, this one-by-one prompting might break
the self-containment of an experiment plan. Consequently, we test with the “whole-list” prompting,
where the LLMs are given the complete experiment list and are asked to explain all experiment steps
together.

As shown in Table 3, unlike the open-source LLMs, the explanation performances of those closed-
source LLMs are generally improved after adopting whole-list prompting. According to further
manual checking, after maintaining the self-containment of the experiments, the LLMs can refer to
other experiments and better grasp the underlying motivation of the current experiment.

Table 4: The human evaluation results on LLMs’
output explanations of EXPDESIGN . “Acc. ra-
tio” means how many model outputs are ac-
cepted by the annotator.

Models Acc. ratio
Llama 3.1-70B 22.93
Gemini 1.5 Pro 55.07
Claude 3.5 sonnet 61.46
GPT-4o 69.72
o1-preview 76.14

Q2: Do human evaluation results align with
automatic metrics for explanation? As the ex-
planation can be open-ended, in this paragraph,
we provide the human evaluation results on dif-
ferent LLMs’ experiment explanation outputs. In
detail, we randomly select 20 out of 100 papers
and ask 5 annotators to read the experiments along
with each model’s explanations; we then let the
annotator decide whether each model’s explana-
tion is acceptable (see Appendix C.1 for more
details). Table 4 illustrates the results, where the
score variance is higher than Table 2. However,
the performance ranking of both tables is perfectly
correlated with each other (Spearman’s rank cor-
relation coefficient = 1), demonstrating the effec-
tiveness of S-Match.

Q3: Do more contexts boost performance? We also investigate the impact of input context
length for EXPDESIGN. As shown in Figure 4, we scale up the input pre-experiment context length
from 0.1k to 10k tokens (10k tokens is the maximum paper context length in the dataset). For the
experiment planning, more input context does improve the performance of different LLMs, while this
benefit stops after exceeding 5k tokens, which is similar to EQINFER’s scaling results — after the
necessary information has been covered, scaling more up doesn’t boost the performance. Meanwhile,
the results of the experiment explanation demonstrate that explaining motivations almost doesn’t
require any paper context, i.e., the LLMs solely rely on the given experiments. However, we do not
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Figure 4: The input context length scaling trend of different LLMs on the EXPDESIGN task.

Table 5: The figure inputs ablation of EXPDESIGN . For the maximum text input length, same as the
setting in Table 2, we use 2,000 and 3,000 words for open- and closed-source models, respectively.
For the closed-source GPT-4o and GPT-4, as they have long context window sizes, we use all the
figures of each paper. While for InternVL2, we randomly select two figures per input paper.

Experiment Design Experiment Explanation
Models S-F1 S-Precision S-Recall S-Match ROUGE-L ROUGE-1

GPT-4o 53.00 51.24 55.12 58.54 29.25 35.50
w/ figures 50.11 48.94 51.59 58.53 27.87 34.30

GPT-4 43.89 42.34 45.82 56.95 25.98 33.37
w/ figures 43.54 42.56 44.85 55.03 22.82 30.01

InternVL2-26B 40.52 48.95 35.20 50.03 29.13 34.26
w/ figures 38.83 46.91 33.70 50.29 29.29 34.06

expect this because we hope LLMs can explain the motivation based on a thorough understanding of
the paper, just like how human experts do. Hence, there is still a considerable gap between the LLMs
and humans in terms of grasping research motivations.

Q4: Does multi-modal input boost performance? Intuitively, besides the text, when designing
experiments for a given research topic, the figures can provide rich supplementary information, such as
an algorithm illustration that can help better understand this research topic and underlying motivations.
Hence, we test the performance of different LMMs (Large Multimodal Models), including GPT4-o,
GPT-4, and InternVL2 (Chen et al., 2024a). Table 5 shows the ablation results on the figure data.
To our surprise, the figure data doesn’t improve the LMMs’ results in this task, even harming the
performances. This might be due to the low informativeness of the figures, as figures usually consume
more input tokens but act only as supplementary information to the text, indicating future work on
developing LMMs that can effectively leverage the scientific figures.

5.3 PAPERWEAKNESS

Settings. Intuitively, the full paper content is necessary for providing feedback to that paper.
Therefore, instead of setting a maximum input length, in WEAKNESS, we try to feed all the paper
context into the LLMs. As the input length of WEAKNESS is extremely long (see Table 13), we adopt
a “split-combine” method — we first split the whole paper into several smaller pieces and let LLMs
predict the weaknesses of each piece separately; after that, we combine all pieces’ weaknesses as
a final complete prediction. In practice, for the length of each small piece, we set 2,000 and 3,000
words for open- and closed-source LLMs, respectively. Additionally, in this task, we also examine
the performance of a recent agent framework, namely AI-SCI (Lu et al., 2024), which enhances GPT-
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Table 6: Various LLMs’ performances on the 993 instances of WEAKNESS .

Weakness Diversity
Methods SN-F1 (%) SN-Precision (%) SN-Recall (%) ITF-IDF (↑)

Human Review — — — 7.69
Open-source LLMs

OLMo-7B (Groeneveld et al., 2024) 43.25 40.38 47.04 2.45
Falcon-40B (Almazrouei et al., 2023) 27.34 25.13 30.88 1.06
Gemma 2-27B (Gemma Team, 2024) 35.85 34.68 37.91 1.43
Mistral-7B (Jiang et al., 2023) 42.03 43.80 40.77 1.17
Mixtral-8x22B-MoE (Jiang et al., 2024) 43.23 44.59 42.23 0.98
Llama 3.1-70B (MetaAI, 2024) 42.78 43.19 42.70 2.60
Qwen 2.5-72B (Qwen Team, 2024) 42.74 43.80 42.05 1.21

Closed-source LLMs
Gemini 1.5 Pro (Anil et al., 2023) 48.75 43.97 55.08 5.88
Claude 3.5 sonnet (Anthropic, 2024a) 47.85 41.97 56.00 3.91
GPT-4 (OpenAI et al., 2023) 47.66 42.15 55.19 5.31
GPT-4o (OpenAI, 2024a) 47.73 42.09 55.48 5.95
o1-preview (OpenAI, 2024b) 48.62 42.54 57.08 5.63

LLM Agent Framework
AI-SCI (GPT-4o) (Lu et al., 2024) 45.05 40.02 51.91 2.23

Table 7: The performance comparison of different input processing methods for WEAKNESS . We
use GPT-4o and GPT-4-Turbo because both accept a maximum of 128k tokens input. We also put the
results of AI-SCI in the table for reference. Here, “split-combine” splits the input paper into several
pieces, where each piece’s length is denoted as “window size”; “no-split” means the conventional
input cutting, for example, if the window size is 3,000, then only the first 3,000 words in the paper
are used. According to the data statistics, 20,000 words can cover maximum lengths of more than
95% of the papers in our dataset.

Models Input Context
Processing

Window Size
(in words) SN-F1 SN-Precision SN-Recall ITF-IDF

GPT-4-Turbo
split-combine 3,000 47.66 42.15 55.19 5.31

no-split 3,000 45.80 43.66 48.39 5.58
no-split 20,000 44.99 42.64 47.82 5.58

GPT-4o
split-combine 3,000 47.73 42.09 55.48 5.95

no-split 3,000 45.74 43.45 48.54 5.92
no-split 20,000 45.47 42.97 48.51 6.02

AI-SCI
split-combine 3,000 45.05 40.02 51.91 2.23

no-split 3,000 42.56 40.90 44.65 2.53
no-split 20,000 42.53 40.75 44.78 2.58

4o’s paper review ability by leveraging advanced prompting techniques, e.g., self-reflection (Shinn
et al., 2024) and response ensembling (Wang et al., 2023).4

Main results. Table 6 shows the main results, where the closed-source LLMs’ overall performances
are generally superior to the results of open-source LLMs. Similarly, closed-source LLMs are
particularly excellent in SN-Recall because of more generated weaknesses. However, there is still
a considerable gap in the weakness diversity between the LLMs and human experts.5 Compared
with human review, most LLM-generated weaknesses are vague and lack the necessary knowledge
about some frontier research works. Surprisingly, AI-SCI performs worse than backbone GPT-4o,
especially on ITF-IDF, which suggests the challenge of WEAKNESS, i.e., simply adopting popular
prompting techniques cannot well address this task.

4We don’t run AI-SCI on EXPDESIGN, because AI-SCI takes model-generated ideas as the inputs, which
are incompatible with our task setting.

5Note that the human’s ITF-IDF score in Table 6 can be slightly underestimated. This is because we keep the
repeated weaknesses in the human review, which affects the human review’s informativeness (lower ITF) but is
useful when calculating the SN-Recall for LLMs.
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Table 8: The ablation study about the paper tables and figures of WEAKNESS . Based on the
conclusion in Table 7, we use the “split-combine” to process the text input here (2,000 and 3,000
words context window size for open- and closed-source models). For GPT-4o, we use all the
table/figure images; while for InternVL2, we randomly select two images per paper, i.e., two random
figures, two random tables, or one random figure + table.

Models SN-F1 SN-Precision SN-Recall ITF-IDF

GPT-4o 47.73 42.09 55.48 5.95
w/ tables 46.76 41.32 54.17 5.53
w/ figures 46.62 41.20 54.04 5.48
w/ tables & figures 46.58 41.17 53.98 5.36

InternVL2-26B 41.91 41.02 43.28 1.48
w/ tables 40.55 40.37 42.91 1.46
w/ figures 42.88 42.10 43.76 1.46
w/ tables & figures 42.44 42.00 43.31 1.44

Q1: Is the split-combine effective? Ideally, if the LLM has a sufficient context window size, it is
unnecessary to split the input papers for separate processing. Consequently, in this paragraph, we
utilize the LLMs accepting long context input to compare “split-combine” with “no-split”, i.e., letting
LLMs write weaknesses by giving the full paper. In practice, we set the maximum number of input
words to 20k, which ensures ≥95% papers in the WEAKNESS can be fully processed. As shown in
Table 7, compared with giving the full paper contexts, split-combine generally brings about superior
performances. During manual checking, we find that, when full paper is available, LLMs frequently
neglect some important sections and omit weaknesses accordingly, while split-combine ensures that
the LLMs can carefully brainstorm weaknesses within each smaller piece. Surprisingly, the LLMs’
performances with full paper context can be even worse than just remaining the first 3,000 words.
This implies that even the current powerful long-context LLMs still fall short when processing long
scientific documents.

Q2: Does multi-modal input boost performance? Our dataset covers both tables and figure
illustrations extracted from the paper PDF as inputs. Intuitively, when reviewing a paper, both figures
and tables are critical, not only for a better understanding, but also because some weaknesses are
related to tables/figures.6 Therefore, in Table 8, we adopt two LMMs to investigate the effectiveness of
image inputs. Overall, image information, including both figures and tables, doesn’t bring significant
performance improvement, i.e., only InternVL2 gains a performance boost after incorporating figures;
while tables slightly drop both models’ results. This is probably because the LMMs cannot reason
well over the information-intensive images, especially the table images.

5.4 REVIEWCRITIQUE

Settings. As individual review comments are split into multiple smaller segments (sentences), in
order to avoid the performance variance that comes from the prompting, we follow Du et al. (2024)
to utilize two prompting strategies. i) Labeling-All: given everything necessary including a list
of indexed review segments, require the LLM to output a list of triples, like {id, reliable or not,
explanation}. ii) Select-Deficient: Given everything necessary including a list of indexed review
segments, require the LLM to output a list of tuples, {id, explanation}, when it believes the “id”
corresponds to a deficient segment.

To further enhance evaluation robustness, we ensemble the results obtained from the two prompting
strategies using two methods. i) Both “No”: if both prompts classify a segment as deficient, we
consider it to be deficient. ii) Either “No”: if either of the prompts labels a segment as Deficient, we
consider it to be deficient.

6We find that there is approximately one human-written weakness related to figures or tables in each paper.
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Table 9: From (Du et al., 2024), various LLMs’ performances on the 11,376 instances of
REVIEWCRITIQUE . The best F1 score among different prompt methods for a single model is

underlined. The best F1 score across all models is also bold.

Models Precision / Recall / F1

Labeling-All Select-Deficient Both “No” Either “No”
Open-source LLMs

Llama3-8B (AI@Meta, 2024) 7.73 / 45.95 / 12.22 11.47 / 30.29 / 14.88 11.37 / 21.27 / 12.46 8.19 / 53.61 / 13.35
Llama3-70B (AI@Meta, 2024) 13.63 / 42.49 / 18.19 13.95 / 31.16 / 17.46 16.16 / 23.51 / 16.67 12.46 / 50.02 / 18.43
Qwen2-72B (Bai et al., 2023) 9.97 / 26.60 / 12.96 11.35 / 34.61 / 14.64 9.07 / 15.13 / 9.62 10.49 / 43.00 / 15.16

Closed-source LLMs
Gemini 1.5 (Anil et al., 2023) 16.58 / 34.13 / 19.76 14.71 / 43.60 / 19.72 17.01 / 27.05 / 18.28 14.46 / 50.37 / 20.34
GPT-4 (OpenAI et al., 2023) 14.91 / 34.49 / 18.38 17.18 / 34.59 / 20.30 18.71 / 21.40 / 16.85 14.72 / 47.68 / 20.66
Claude Opus (Anthropic, 2024b) 16.86 / 34.26 / 20.35 17.69 / 26.61 / 18.71 17.14 / 18.70 / 15.78 16.94 / 42.12 / 21.99

Main results. We put the results of Du et al. (2024) in Table 9. Closed-source models (GPT-4,
Claude Opus, and Gemini 1.5) generally outperform open-source models (Llama3-8B and 70B,
Qwen2-72B) in F1 score. Claude Opus achieves the highest F1 scores, with GPT-4 and Gemini 1.5
performing slightly worse. Notably, recall scores are consistently higher than precision scores across
all LLMs and prompting strategies, suggesting that LLMs tend to incorrectly identify segments as
deficient. Despite the superior performance of the closed-source models, their F1 scores remain
relatively low even with different prompt strategies, highlighting the challenges LLMs face in such
expertise-intensive tasks and emphasizing the importance of human expertise in the meta-reviewing
process.

Q: How about the LLMs explanation quality regarding the deficient review? As we also
prompt the LLMs to generate the corresponding explanation on why they think each review segment
is deficient, we report how well the model-generated deficiency explanation aligns with the human
explanation.

Table 10: Evaluation of LLMs’ explanations for
correctly identified deficient segments.

Model ROUGE-1/2/L/BERTScore

GPT-4 17.13 / 2.71 / 14.64 / 55.63
Claude Opus 20.18 / 3.69 / 17.52 / 57.28
Gemini 1.5 18.47 / 2.98 / 16.38 / 56.46
Llama3-8B 16.49 / 2.22 / 13.65 / 55.23
Llama3-70B 15.94 / 1.95 / 13.78 / 57.09
Qwen2-72B 17.07 / 3.00 / 14.69 / 56.88

We put the results of Du et al. (2024) in Table 10.
The results in Table 10 show that overall scores
for all LLMs are relatively low, indicating they
can identify some Deficient segments but struggle
to articulate their reasoning. Among the LLMs,
Claude Opus achieves the highest scores across
all metrics, suggesting its explanations align best
with human annotators. Claude Opus also ex-
cels in identifying Deficient segments, as shown
previously. GPT-4 and Gemini 1.5 show similar
performance to Claude Opus. The open-source models, Llama3 (8B and 70B) and Qwen2-72B,
generally score lower than the closed-source models.

6 CONCLUSION

In this work, we propose AAAR-1.0, a novel benchmark targeting a comprehensive evaluation of the
current LLMs’ AI research capacity. AAAR-1.0 consists of distinct expertise-intensive tasks along
with the curated evaluation metrics, and collect high-quality data by employing senior AI researchers.
Extensive experiments highlight the challenges and values of AAAR-1.0.

LIMITATIONS

We shed light on two limitations of this work: i) As we gather data from open-source platforms
such as arXiv and OpenReview, there is a possibility that current or future LLMs may be trained
on the same source data utilized in our benchmark. This situation could influence the fairness of
LLM comparisons and the conclusions drawn from this paper. While we acknowledge this potential
data leakage, we maintain that our work can provide valuable insights and serve as an upper bound
for some LLMs, particularly if they are indeed pretrained on those scientific papers. At present, this
research can inform the design of current LLMs and agents, enhancing the community’s understanding
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of the strengths and limitations of using LLMs in scientific research. ii) Meanwhile, due to the high
consumption of employing senior researchers in conducting data annotation, the data size for some
tasks, such as EXPDESIGN, is relatively small. This might introduce variability in LLM performance,
even with repeated runs. As this work marks the beginning of a series, we plan to release larger-scale
datasets that will cover more diverse research tasks in AAAR-2.0.

ETHICS STATEMENT

Our study highlights that LLMs can be used to assist humans in AI research. This doesn’t mean
we encourage the use of AI to replace human researchers. In contrast, we emphasize that the main
responsibility for conducting scientific research should always lie with humans to prevent any societal
risks, while the LLMs are only tools for making human research more efficient. To this end, we
commit to careful distribution of the data collected in our research, ensuring it serves strictly for
research purposes. Our goal is to mitigate the risks while maximizing the benefits offered by LLMs.
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APPENDICES

Within this supplementary material, we elaborate on the following aspects:

• Appendix A: Data Statistics and Diversity

• Appendix B: Implementation Details

• Appendix C: More Experiment Results and Details

• Appendix D: Data Cases and Annotation Platform Illustration

• Appendix E: Prompt Templates

A DATA STATISTICS AND DIVERSITY

We provide the detailed data statistics of three datasets in our benchmark, as shown in Table 11, 12,
and 13. We use the NLTK package7 to tokenize words and count the length. When calculating the
length of equations, we use the pylatexenc tool8 to simplify the equations first.

Meanwhile, for the WEAKNESS, we also plot the review scores distribution of the papers used in
the dataset, as well as the track distribution. As can be found in Figure 5, our dataset has a decent
distribution, where the papers are uniformly distributed across 13 tracks, and most papers’ scores
ranged from 5 to 8 (i.e., most papers are weakly rejected or accepted).

Table 11: The statistics of EQINFER . Here, the “left” and “right” input context indicates the
paper contexts before and after the missed equation; “pos.” means the ground-truth equations
(written by the source paper authors), while “neg.” is the GPT4-synthetic wrong equations.

# of classification instances 1,049
# of source papers 869

ave. “left” input context length (in words) 4,377
ave. “right” input context length (in words) 6,362
max “left” input context length (in words) 24,849
max “right” input context length (in words) 32,948
min “left” input context length (in words) 711
min “right” input context length (in words) 8

ave. “pos.” output equation length (in character) 55
ave. “neg.” output equation length (in character) 48
max “pos.” output equation length (in character) 1,039
max “neg.” output equation length (in character) 306
min “pos.” output equation length (in character) 6
min “neg.” output equation length (in character) 4

B IMPLEMENTATION DETAILS

B.1 METRIC DETAILS

When calculating the metrics, specifically for the similarity-based scores, we utilize Sentence-
BERT (Reimers, 2019) to encode each segment (e.g., each experiment idea in the list) into a dense
vector, and then calculate the cosine similarity,9 which takes about 1GB of memory when running on
a single A100 GPU.

7https://www.nltk.org/
8https://github.com/phfaist/pylatexenc
9https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Table 12: The statistics of EXPDESIGN .

# of instances 100
# of source papers 100

ave. input context length (in words) 4,288
max input context length (in words) 9,799
min input context length (in words) 698
ave. # of input figures 2.6
max # of input figures 16.0
min # of input figures 0.0

ave. length of Experiment&Explanation list 5.7
ave. length per experiment (in words) 34.3
ave. length per explanation (in words) 27.1
max length of Experiment&Explanation list 13
max length per experiment (in words) 135
max length per explanation (in words) 89
min length of Experiment&Explanation list 2
min length per experiment (in words) 9
min length per explanation (in words) 9

Table 13: The statistics of WEAKNESS .

# of instances 993
# of source papers 993

ave. input context length (in words) 9,811
max input context length (in words) 49,195
min input context length (in words) 24
ave. # of input figures 7.0
max # of input figures 37.0
min # of input figures 0.0
ave. # of input tables 4.3
max # of input tables 53.0
min # of input tables 0.0

ave. # of reviewers per paper 3.8
max # of reviewers per paper 9.0
min # of reviewers per paper 3.0
ave. # of weaknesses per reviewer 4.8
max # of weaknesses per reviewer 39.0
min # of weaknesses per reviewer 1.0
ave. length of weakness (in words) 39.1
max length of weakness (in words) 371.0
min length of weakness (in words) 2.0

B.2 LLMS RUNNING DETAILS

In our experiments, we utilize various LLMs, including both closed and open-sourced. We list the
model weight sources for the open-source LLMs:

• OLMo-7B: https://huggingface.co/allenai/OLMo-7B
• Falcon-40B: https://huggingface.co/tiiuae/falcon-40b
• Gemma 2-27B: https://huggingface.co/google/gemma-2-27b
• Mistral-7B: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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(a) The review score distribution of the papers used in WEAKNESS .
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(b) The track distribution of the papers used in WEAKNESS .

Figure 5: The data diversity illustration of WEAKNESS , including the score distribution and track
distribution of the papers used in our dataset.

• Mixtral-8x22B-MoE: https://huggingface.co/mistralai/
Mixtral-8x22B-Instruct-v0.1

• Llama 3.1-70B: https://huggingface.co/meta-llama/Llama-3.1-70B

• Qwen 2.5-72B: https://huggingface.co/Qwen/Qwen2.5-72B
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We use VLLM to unify the inference endpoints of all the above models.10 We use Pytorch 2.4.0 with
CUDA 12.1, and use 8 NVIDIA A100 GPUs for the LLMs inference.

Meanwhile, we use the gpt-4o-2024-08-06, gpt-4-1106-preview, o1-preview-2024-09-12, gemini-1.5-
pro-002, and claude-3-5-sonnet-20240620 for the closed-source LLMs. We use LiteLLM to unify the
API calling for all these LLMs.11

Given the unstable performance of LLMs, particularly closed-source ones, we run each model thrice
during our experiments, selecting the median result from these repeated runs.

C MORE EXPERIMENT RESULTS AND DETAILS

C.1 HUMAN EVALUATION ON LLM-GENERATED EXPLANATION

We ask 5 annotators to evaluate the LLM-generated explanations. Specifically, each of them is
assigned 4 or 5 papers, along with the corresponding experiment lists. For each paper, the annotator
is given 5 different models’ outputs (model names are anonymized), and the annotator has to decide
if each LLM-generated explanation is acceptable according to the experiment. We show the human
evaluation results in Table 4,

D DATA CASES AND ANNOTATION PLATFORM ILLUSTRATION

As shown in Figure 7, 8, and 9, we show the sample cases of the three tasks in AAAR-1.0. Meanwhile,
we illustrate the screenshot of our annotation platform in Figure 6.

Figure 6: The annotation platform for collecting the annotation of EXPDESIGN . We ask annotators
to first make comments on the Google Drive PDF, then move all the annotations to the online Google
Doc (for further verification and discussion).

E PROMPT TEMPLATES

In this appendix, we attach all the prompts used in this work, including prompts in data collection
and model prediction, as shown in Figure 10, 11, and 12.

10https://github.com/vllm-project/vllm
11https://github.com/BerriAI/litellm
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Figure 7: A sample case of EQINFER .

Figure 8: A sample case of EXPDESIGN .

Figure 9: A sample case of WEAKNESS .
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Figure 10: The prompts used in EQINFER , including both data collection and model prediction.

Figure 11: The prompts used in EXPDESIGN , including both data collection and model prediction.

Figure 12: The prompts used in WEAKNESS .
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