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A B S T R A C T

Backdoor (Trojan) attacks represent a significant adversarial threat to deep neural networks (DNNs). In such
attacks, the presence of an attacker’s backdoor trigger causes a test instance to be misclassified into the
attacker’s chosen target class. Post-training mitigation methods aim to rectify these misclassifications, ensuring
that poisoned models correctly classify backdoor-triggered samples. These methods require the defender to
have access to a small, clean dataset and the potentially compromised DNN. However, most defenses rely
on parameter fine-tuning, making their effectiveness dependent on the dataset size available to the defender.
To overcome the limitations of existing approaches, we propose a method that rectifies misclassifications by
correcting the altered distribution of internal layer activations of backdoor-triggered instances. Distribution
alterations are corrected by applying simple transformations to internal activations. Notably, our method does
not modify any trainable parameters of the DNN, yet it achieves generally good mitigation performance against
various backdoor attacks and benchmarks. Consequently, our approach demonstrates robustness even with
a limited amount of clean data, making it highly practical for real-world applications. The effectiveness of
our approach is validated through both theoretical analysis and extensive experimentation. The appendix is
provided as an electronic component and can be accessed via the link in the footnote.2 The source codes can
be found in the link3 at the footnote.
1. Introduction

Deep neural networks (DNN) have shown impressive performance in
many applications, but are vulnerable to adversarial attacks. Recently,
backdoor (Trojan) attacks have been proposed against DNNs used
for image classification [1–6], speech recognition [7], text classifica-
tion [8], point cloud classification [9], and even deep regression [10].
The attacked DNN will, with high probability, classify to the attacker’s
target class when a test instance is embedded with the attacker’s
backdoor trigger. Moreover, this is achieved while maintaining high
accuracy on backdoor-free instances. Typically, a backdoor attack is
launched by poisoning the training set of the DNN with a few instances
embedded with the trigger and (mis)labeled to the target class.

Most existing works on backdoors either focus on improving the
stealthiness of attacks [11,12], their flexibility for launching [13,14],
their adaptation for different learning paradigms [15–17], or develop
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defenses for different practical scenarios [18–22]. However, there are
few works which study the basic properties of backdoor attacks. Tran
et al. [23] first observed that triggered instances (labeled to the target
class) are separable from clean target class instances in a feature space
consisting of internal layer activations of the poisoned classifier. This
property led to defenses that detect and remove triggered instances
from the poisoned training set [24,25]. As another example, Zhang
et al. [26] studied the differences between the parameters of clean and
attacked classifiers, which inspired a stealthier attack with minimum
degradation in accuracy on clean test instances.

In this paper, we investigate an interesting distribution alteration
property of backdoor attacks. In short, the learned backdoor trigger
causes a change in the distribution of internal activations for test in-
stances with the trigger, compared to that for backdoor-free instances;
and we theoretically demonstrate that instances with the trigger are
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classified to their original source classes after such distribution
lteration is reversed/corrected, with trainable parameters of the
poisoned model untouched. Accordingly, we propose a method to mit-
gate backdoor attacks (post-training), such that classification accuracy
n test instances both with and without the trigger will be close to the
est set accuracy of a clean (backdoor-free) classifier. In particular, we
orrect distribution alteration by exploiting estimated triggers reverse-

engineered by a post-training backdoor detector, e.g., [27,28]. Thus,
we propose a ‘‘detection-before-mitigation’’ defense strategy, where we
first detect if a given model is backdoor-poisoned, and if so, mitigate the
model with the target class(es) and the associated trigger(s) estimated
by the post-training detector.

It is important to distinguish methods that focus on backdoor miti-
gation from methods which focus on backdoor detection. Examples of
he latter, including [27–31], typically detect whether a given model

is backdoor poisoned, and, if so, infer the target class(es) of the attack.
Some detection methods (e.g., the ones proposed by [27–29]) are
reverse-engineering based detectors, which also estimate the backdoor
trigger(s) associated with the inferred target class(es). However, if
an attack is detected, these detection methods may not be able to
tell whether an instance (input test sample) that is classified to the
inferred target class contains the trigger; moreover, these methods do
not infer the (true) original class for a backdoor-trigger image. The
oals of a backdoor mitigation method are: (i) to reduce the number
f backdoor-trigger test instances mis-classified to the target class(es);

(ii) to correctly classify these backdoor-trigger instances and (iii) while
aintaining relatively high accuracy on clean test instances.

Compared with existing mitigation approaches, which require tun-
ing all of the DNN’s (deep neural network’s) parameters, our method
achieves generally better performance and does so without changing
any original, trainable parameters of the DNN. Also, some mitigation
methods are applied irrespective of whether backdoor poisoning is
detected. These methods may unacceptably degrade clean test accu-
racy, and do so even when the DNN is clean (attack-free). By contrast,
our mitigation is performed only after a backdoor attack is detected
(i.e., ‘‘detection-before-mitigation’’), and results in only modest drops
in accuracy on clean test instances. Moreover, while most mitigation
approaches are designed to correctly classify backdoor-trigger instances
without detecting whether these samples in fact contain triggers, our
method not only corrects the decisions for these instances but also
makes explicit inference of whether a test instance possesses a trigger.
Our main contributions in this paper are summarized as follows:

1. We are the first to theoretically prove that the degradation in
classification accuracy on backdoor-triggered instances mono-
tonically correlates with the divergence between the distribu-
tions of clean and backdoor-triggered samples.

2. Accordingly, we propose a novel mitigation method that rectifies
backdoor misclassifications by correcting the altered distribution
of internal layer activations in backdoor-triggered instances.
Unlike most existing defense methods that typically involve
parameter fine-tuning, our approach does not alter any trainable
parameters and solely relies on applying simple transformations
to the internal activations to correct the distribution alteration.

3. The effectiveness of our proposed mitigation method has been
validated through extensive experiments across various back-
door attacks and benchmarks. Moreover, our method demon-
strates greater robustness, particularly beneficial when the de-
fender has access to only a limited number of clean instances,
as it does not alter any trainable model parameters. This feature
makes it especially suitable for practical defense scenarios.
2 
2. Related work

There are few prior works analyzing the basic properties of back-
oor attacks, e.g., the studies conducted by [23,26]. Tran et al. [23]

observed that triggered instances (labeled to the target class) are sep-
arable from clean target class instances, in a feature space consisting
f internal layer activations of the poisoned classifier. They accord-
ngly developed a pre-training backdoor detection system, where the
etected backdoor-trigger instances are removed, and a new model is
rained from scratch on the sanitized dataset. [23] thus acts like an
outlier detection system. In contrast, we observe that backdoor attacks
cause distribution alteration, in internal layers of the DNN, between
clean source class instances and backdoor-trigger instances originat-
ing from the same (source) class. Moreover, we demonstrate that
backdoor-trigger instances are correctly classified to their classes once
this distribution alteration is corrected. We thus propose a post-training
backdoor mitigationmethod based on these findings. In the post-training
scenario, one often assumes the defender only has access to the given
trained model and to a small set of clean instances, which generally
does not include any of the training samples. This small clean set is
nadequate for (from scratch) training an accurate, attack-free classifier.

Existing backdoor defenses are deployed either during the DNN’s
training stage or post-training (but pre-deployment). The ultimate goal
f training-stage defenses is to train an accurate, backdoor-free DNN
iven the possibly poisoned training set. To achieve this goal, methods,
uch as [18,24,25,32–34], either identify a subset of ‘‘high-credible’’ in-

stances for training, or detect and then remove, prior to model learning,
training instances that may contain a backdoor trigger. Post-training
defenders, however, are assumed to have no access to the classifier’s
training set. Many post-training defenses aim to detect whether a given
classifier has been backdoor-compromised. Methods, such as [19,27,28,
35], perform anomaly detection using triggers reverse-engineered on
n assumed independent clean dataset; while [36,37] train a (binary)
eta classifier using ‘‘shadow’’ classifier ‘‘exemplars’’ trained with and
ithout attack.

However, model-detection defenses are not able to mitigate back-
door attacks at test time. Thus, there is a family of post-training
backdoor mitigation approaches proposed to fine-tune the classifier on
he available clean dataset. Neural Cleanse [27] is the first to mitigate

backdoor attacks using the backdoor attack detection results (i.e., the
detected target class and the associated estimated backdoor patterns).
They patch the poisoned DNN by fine-tuning the DNN on 10% of
the original (backdoor-free) training set, 20% of which are embedded
with the reverse engineered backdoor pattern and correctly labeled.
However, it is unreasonable to assume the defender has access to the
clean training set, which is inconsistent with the post-training scenario.

Some methods prune neurons that may be associated with the back-
door attack [38–41]. Liu et al. [38] recognize and prune backdoored
eurons as those are dormant on clean inputs, and then fine-tune
odel parameters. The subsequent pruning based backdoor mitigation

methods work on optimizing the strategy for recognizing backdoored
eurons. Wu et al. [39] propose Adversarial Neuron Pruning (ANP),

where they simulate backdoor perturbation by perturbing neurons’
eight and bias and identify backdoored neurons as the ones that are

sensitive to adversarial neuron perturbations. The neuron perturbations
are optimized to maximizing the classification loss.

Others leverage knowledge distillation to preserve the classification
unction only for clean instances [42,43]. Li et al. [42] propose a

mitigation framework named Neural Attention Distillation (NAD). They
first fine-tune the poisoned DNN on a small set of clean data, then
utilize this DNN as a teacher network to guide the fine-tuning of the
poisoned student network on the same clean dataset. The fine-tuning
process aims to align the internal layer attention of the student network
with that of the teacher network. Xia et al. [43] improve the framework
NAD by aligning Attention Relation Graphs (ARG) between teacher
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Fig. 1. Activation distribution of a neuron in the penultimate layer of ResNet-18 trained on CIFAR-10, for instances with and without a backdoor trigger, for (a) a clean classifier
nd (b) a backdoor-poisoned classifier (with the same trigger). In (c), the distribution alteration in (b) is reversed by our proposed method — most instances with the trigger will
hus be correctly classified.
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and student models during knowledge distillation. ARG fully considers
the correlation of attention features of different orders, while NAD
only compares the feature attentions of the same order during the
fine-tuning.

Some solve a min–max optimization problem analogous to adver-
sarial training defenses used against test-time evasion attacks [44,45].
In [44], the inner maximization problem, to align with the goal for the
ackdoor attacker, aims to find a trigger that causes a high loss for pre-
icting the correct label. By contrast, the outer minimization problem
s to optimize the model parameters so that the ‘‘adversarial loss’’ is
inimized. These defenses usually incur a significant degradation in

he classifier’s accuracy on clean instances, especially when the clean
ata available for classifier fine-tuning is insufficient.

Another family of approaches are designed to catch the adversar-
ial entities in the act, without altering the classifier [21,22,46]. A
TRong Intentional Perturbation (STRIP) method, proposed in [22],

is based on the observation that predictions of perturbed triggered
inputs remain consistent across different perturbing patterns, unlike
redictions of perturbed clean inputs, which vary significantly. Conse-
uently, triggered inputs exhibiting consistently low entropy and clean

inputs showing high entropy can be distinctly identified. STRIP method
involves blending test images with a few clean images and detecting
backdoor triggers by evaluating the average entropy of the model’s
posterior probabilities for these blended images. A low entropy value
signals the presence of a backdoor-triggered input.

Most existing backdoor mitigation methods apply mitigation in-
dependently of detection, e.g., [39,42–44,47]. That is, they apply a

itigation method on a given model without knowing whether it is
ackdoor poisoned, with the expectation that the mitigation method
hould work well regardless of the target class(es) and associated back-
oor triggers(s). However, mitigation may harm the model’s accuracy
n clean instances, especially when mitigation is based only on a
imited amount of clean labeled data, which is common in practice, see

Table 4. Moreover, mitigation may waste significant computation if the
given model is attack-free. Hence, we argue that mitigation should be
onducted within a ‘‘detection-before-mitigation’’ framework. In other
ords, one should perform backdoor mitigation only if the given model

s detected as backdoor-poisoned. This avoids a significant drop in
ccuracy on clean instances after mitigation (in the case where the

DNN is backdoor-free). Combined with a backdoor detection method
(which may be based on embedded feature activations), our proposed
mitigation method is also applicable when multiple backdoor attacks are
encoded in the DNN.

3. Distribution alteration property of backdoor attacks

In this section, we first present the activation distribution alteration
roperty of backdoor attacks. Then for a simplified setting, we an-

alytically show how closing the ‘‘gap’’ between the clean-instance
and backdoor-trigger instance distributions improves the accuracy in
classifying backdoor-trigger instances; this will guide the design of our

4.
backdoor mitigation approach in Section l

3 
Property 3.1 (Activation Distribution Alteration). For a successful back-
door attack, different test samples embedded with the backdoor trigger will
induce perturbations to the activations of an internal DNN layer that are in
 similar direction. Thus, there is effectively a ‘‘shift’’ in the internal layer
ctivation distribution for backdoor-trigger instances, compared to that for
ackdoor-free instances.

This property is easily demonstrated empirically, visually. Consider
 set of clean instances from CIFAR-10 [48] and the same set of

instances but with the backdoor trigger used by [1] embedded in each
nstance. For a ResNet-18 [49] classifier that was successfully attacked

using this trigger, there is a divergence between the distributions of
the internal layer activations induced by these two sets of instances.
This is shown in Fig. 1b for a neuron in the penultimate layer as an
example. In comparison, for a clean classifier (not backdoor-attacked),
he divergence between the two distributions is almost negligible as
hown in Fig. 1a. Based on these visualizations, we ask the following
uestion: Suppose the distribution alteration is reversed for each neuron,
.g., by applying a transformation to the internal activations of the triggered
nstances, so that the transformed distribution now closely agrees with the
istribution for clean (without the backdoor-trigger) instances (see Fig. 1c).
Then, following this compensation, will the classifier accurately predict the
true class of origin for these backdoor-trigger instances?

Here, we investigate this problem in a simplified binary classifica-
tion setting similar to the one considered by [50]. For a clean training
random vector (𝐗, 𝑌 ) with a uniform class prior, i.e.𝑌 ∼  {−1,+1}
and with 𝐗|𝑌 ∼  (𝑌 ⋅ 𝝁, 𝛴), where 𝝁 ∈ R𝑑 and 𝛴 = 𝜎2𝑰 , consider a
backdoor attack with target class ‘+1’, triggered instance 𝐗𝑏 ∼  (𝝁𝑏, 𝛴𝑏)

ith 𝝁𝑏 = −𝝁 + 𝝐, and 𝛴𝑏 = 𝜎2𝑏𝑰 . Here, class ‘−1’ is automatically the
ource class of 𝐗𝑏 since there are only two classes.

With backdoor poisoning, a multi-layer perceptron (MLP) classifier
is trained with one hidden layer of 𝐽 nodes, a batch normalization (BN)
layer4 [51] followed by linear activation, and two output nodes with
unctions 𝑓− ∶ R𝑑 → R and 𝑓+ ∶ R𝑑 → R corresponding to classes ‘−1’

and ‘+1’ respectively. An instance 𝒙 will be classified to class ‘−1’ if
𝑓−(𝒙) > 𝑓+(𝒙); else it will be classified to ‘+1’.

Definition 3.1 (𝜂-Erroneous Classifier). A classifier is said to be 𝜂-
erroneous if the error rate for each class is upper bounded by 𝜂.

Definition 3.2 (𝜓-Successful Attack). A backdoor attack is said to
be 𝜓-successful if its attack success rate (ASR), i.e., the probability
or triggered instances being (mis)classified to the attacker’s target
lass [52], is at least 𝜓 ; in our case, this means that 𝑃 [𝑓+(𝐗𝑏) >
𝑓−(𝐗𝑏)] ≥ 𝜓 .

4 Here we utilize the transformations in the BN layer to reverse the
istribution alteration for simplicity. Our method does not truly rely on the
xistence of BN layers in the trained network, as one can always insert a BN
ayer between any two layers of (an already trained) network.
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Given the settings above, for an arbitrary input 𝒙, the activation of
the 𝑗th node (𝑗 ∈ {1,… , 𝐽}) (after BN with trained parameters 𝛾𝑗 and
𝛽𝑗), with weight vector 𝒘𝑗 in the hidden layer, is:

𝑎𝑗 (𝒙) =
𝒘⊤
𝑗 𝒙 − 𝑚𝑗
√

𝑣𝑗
𝛾𝑗 + 𝛽𝑗 , (1)

where 𝑚𝑗 and 𝑣𝑗 respectively are the mean and variance stored by
he BN layer during training on the poisoned training set. Then the
ctivation distribution for clean source class instances (𝐗|𝑌 = −1) ∼

 (−𝝁, 𝛴) is a Gaussian specified by mean E[𝑎𝑗 (𝐗)|𝑌 = −1] and variance
Var [𝑎𝑗 (𝐗)|𝑌 = −1]; while for triggered instances 𝐗𝑏 ∼  (𝝁𝑏, 𝛴𝑏), the
activation follows a Gaussian specified by mean E[𝑎𝑗 (𝐗𝑏)] and variance
Var [𝑎𝑗 (𝐗𝑏)]. An easy way to eliminate the divergence between these
two distributions is to create a classifier for triggered instances 𝐗𝑏5 by
eplacing 𝑎𝑗 in Eq. (1) with 𝑎∗𝑗 (𝒙) = (𝒘⊤

𝑗 𝒙 − 𝑚∗
𝑗 )𝛾𝑗∕

√

𝑣∗𝑗 + 𝛽𝑗 for each
node 𝑗, where (see Apdx. A.1 for derivation):

𝑚∗
𝑗 =

𝜎𝑏
𝜎
𝑚𝑗 + (𝜎𝑏

𝜎
− 1)𝒘⊤

𝑗 𝝁 +𝒘⊤
𝑗 𝝐 and 𝑣∗𝑗 =

𝜎𝑏
𝜎
𝑣𝑗 . (2)

With these choices, E[𝑎∗𝑗 (𝐗𝑏)] = E[𝑎𝑗 (𝐗)|𝑌 = −1] and Var [𝑎∗𝑗 (𝐗𝑏)] =
Var [𝑎𝑗 (𝐗)|𝑌 = −1] are achieved. But here, we aim to study the quan-
titative relationship between the distribution divergence and the SIA
metric of Definition 3.3 below. Thus, we consider an ‘‘intermediate
state’’ with a classifier specified by output node functions 𝑔−(⋅|𝛼) ∶
𝑑 → R and 𝑔+(⋅|𝛼) ∶ R𝑑 → R, where for each output node 𝑖 ∈

{−,+}, 𝑔𝑖(𝒙|𝛼) = 𝒖⊤𝑖 𝒂̂(𝒙|𝛼) depends on a ‘‘transition variable’’ 𝛼 ∈
[0, 1], with 𝒖𝑖 the weight vector for the original output function 𝑓𝑖.
𝒂̂(𝒙|𝛼) = [𝑎̂1(𝒙|𝛼),… , 𝑎̂𝐽 (𝒙|𝛼)]⊤ is the activation vector for input 𝒙
where 𝑎̂𝑗 (𝒙|𝛼) = (𝒘⊤

𝑗 𝒙−𝑚̂𝑗 (𝛼))𝛾𝑗∕
√

𝑣̂𝑗 (𝛼) +𝛽𝑗 , with 𝑚̂𝑗 (𝛼) = 𝛼 𝑚𝑗+ (1 −𝛼)𝑚∗
𝑗

nd 𝑣̂𝑗 (𝛼) = (𝛼√𝑣𝑗 + (1 − 𝛼)
√

𝑣∗𝑗 )
2 being the ‘‘intermediate’’ mean and

variance respectively. Given these settings, our main theoretical results
are presented below.

Definition 3.3 (Source Inference Accuracy (SIA)). SIA is the probability
hat a triggered instance is classified to its original source class [53],
i.e., 𝑃 [𝑔−(𝐗𝑏|𝛼) > 𝑔+(𝐗𝑏|𝛼)].

Theorem 3.1 (Monotonicity of SIA with Divergence). If the binary classi-
fier with 𝑓− and 𝑓+ is 𝜂-erroneous with 𝜂 < 1∕2, the attack is 𝜓-successful
ith 𝜓 > 1∕2, and 𝜎𝑏 ≤ 𝜎, then SIA of the modified classifier, i.e.,

𝑃 [𝑔−(𝐗𝑏|𝛼) > 𝑔+(𝐗𝑏|𝛼)], monotonically decreases as 𝛼 ∈ [0, 1] increases.
The proof of the theorem is given in Apdx. A.2. Note that the as-

sumptions for Theorem 3.1 are very mild and reasonable. For example,
 < 1∕2 is a minimum requirement for the classifier and 𝜓 > 1∕2 is a

minimum requirement for a successful backdoor attack. Moreover, 𝜎𝑏 ≤
𝜎 generally holds empirically since trigger embedding (e.g., consider a
atch attack) typically reduces the variance of source class instances
while additive attacks do not change the variance). Also note that 𝛼
erely gives a way of quantifying distribution divergence for purpose

f analysis. According to these results, the core part of our proposed
ackdoor mitigation approach should be to find a modified classifier
𝑔(⋅|𝜣) by minimizing (e.g., using sub-gradient methods) a measure of
distribution divergence over a well-chosen set of parameters, 𝜣. This
pproach is next explicated.

4. Reversing distribution alteration for backdoor mitigation

4.1. Problem description

Threat model. For input space  and label space , a classifier that
as been successfully backdoor-attacked will predict to the attacker’s

5 These can be constructed in practice, given an estimated backdoor trigger
(obtained by applying a reverse-engineering based backdoor detector, e.g., [27,
28]), by embedding the trigger in clean instances available to the defender.
4 
target class 𝑡∗ ∈  when a test instance 𝒙 ∈  is embedded with
he backdoor trigger using an incorporation function 𝛥 ∶  →  .
n addition to this ‘‘all-to-one’’ setting, we also consider the ‘‘all-to-all’’
etting where a test instance from any class 𝑐 ∈  will be (mis)classified
o class (𝑐 + 1)𝑚𝑜𝑑|| when it is embedded with the trigger [1].
Defender’s goals. Given a trained classifier 𝑓 ∶  →  that may

possibly be attacked, the defender aims to mitigate possible attacks
by producing a mapping 𝑓 ∶  →  which (a) has high accuracy
in classifying clean instances; (b) when there is a backdoor attack,
classifies triggered instances to their original source class, as though
there is no trigger embedded, i.e., achieves a high SIA; and (c) detects
whether or not a test sample contains a backdoor trigger.

Defender’s assumptions. We consider a post-training scenario
here the defender has no access to the training set of the classifier. The
efender does possess an independent clean dataset, but this dataset is
oo small to train an accurate classifier from scratch, and even too small
o effectively fine-tune the full set of classifier parameters [27,38,44].

The defender has full (white box) access to the classifier, but does
ot know whether it has been attacked and, if so, does not know the
rigger pattern that was used, i.e., the defense is unsupervised — we will
everage existing post-training detectors to determine if the classifier

was attacked and, if so, to estimate the target class(es) of the attack
nd the backdoor trigger.
The ‘‘detection-before-mitigation’’ scenario: We propose that

ackdoor detection should generally be performed before mitigation.
That is, one should first apply a backdoor detection method on the
given model and perform backdoor mitigation on it only if it is detected
as backdoor poisoned. Otherwise, backdoor mitigation may harm the
accuracy of the model and is a waste of computation if there is no
attack. On the other hand, if there is an attack, utilizing the detection
results (e.g., the detected target class(es)) helps to reduce the degra-
dation in the classifier’s accuracy on clean test data brought about by
mitigation. (See the experimental results of Section 5.3 and Table 10.)

ur method indeed mitigates only when a backdoor is detected, and
exploits knowledge of the detected target class(es), as well as the
estimated backdoor trigger, produced by post-training detectors such
as [27,28].

4.2. Method

Key idea: The principle behind our mitigation method is simple:
A backdoor-trigger instance will be correctly classified to its original
source class by the poisoned model if the model is altered in such a way
as to follow the same distribution as the clean source class instances in
each internal layer feature space of the model (as shown in Fig. 1 and
proved by Theorem 3.1). For this purpose there is no need to modify the
trainable parameters. As demonstrated in Fig. 2, we align distributions
through simple transformations, e.g., those used in batch normalization,
on internal layer feature maps, produced for clean samples that are
embedded with the estimated backdoor trigger (heretofore referred to
as ‘‘backdoor-trigger instances’’). The transformation parameters are
optimized by minimizing the divergence between the distributions of
clean instances and triggered instances. To illustrate the distribution
correction, consider two distributions, 𝑝 and 𝑞. Our objective is to align
𝑞 with 𝑝 using a transformation ℎ applied to 𝑞. This transformation,
parameterized by 𝜃, is defined as follows:

ℎ(𝑞|𝜃) = max(min(
𝑞 − 𝜇
𝜎

, 𝑤), 𝑣).

Here, 𝜇 and 𝜎 are the mean and standard deviation, while 𝑤 and
define the upper and lower saturation limits. The transformation

arameters 𝜃 = {𝜇 , 𝜎 , 𝑤, 𝑣} are optimized by minimizing the, e.g.,
ullback–Leibler divergence between 𝑝 and the transformed distribu-

ion ℎ(𝑞|𝜃):
ar g min
𝜃
𝐷𝐾 𝐿(𝑝 ∥ ℎ(𝑞|𝜃)).
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Fig. 2. Demonstration of activation distribution correction.
Fig. 3. Illustration of our backdoor mitigation framework with a test-time inference rule.
To approximate the distributions, we calculate the histogram of (trans-
formed) feature maps in each internal layer. Our mitigation framework,
along with the test-time detection rule, is visually summarized in Fig. 3.
A detailed explanation will follow the introduction of our mitigation
strategy.

Now we elaborate our mitigation strategy, which is also summarized
in Fig. 2 and Algo. 1. Based on Theorem 3.1, it would seem that
a good mitigation approach involves modifying the classifier 𝑓 , i.e.,
creating a new classifier 𝑔(⋅|𝜣) ∶  →  from 𝑓 by applying a
transformation function ℎ𝑗 ,𝑙(⋅|𝜽𝑗 ,𝑙) ∶ R → R to the activation of each
neuron 𝑗 ∈ {1,… , 𝐽𝑙} in each layer 𝑙 ∈ {1,… , 𝐿}. The transformation
parameters 𝜣 = {𝜽𝑗 ,𝑙} should be jointly chosen so as to minimize the
aggregation (e.g., sum) of the divergences between the distributions
𝑞𝑗 ,𝑙(𝜽<𝑙 ∪𝜽𝑗 ,𝑙) obtained using ℎ𝑗 ,𝑙(𝑧𝑗 ,𝑙(𝛥(𝐗)|𝜽<𝑙)|𝜽𝑗 ,𝑙) (i.e., distributions of
the transformed activations of backdoor-trigger samples) and the target
distributions 𝑝𝑗 ,𝑙 for 𝑧𝑗 ,𝑙(𝐗) (i.e., distributions of the activations of clean
samples) for ∀𝑗 , 𝑙, where 𝐗 follows the clean data distribution, i.e.:

minimize
𝜣={𝜽𝑗 ,𝑙}

∑

𝑗 ,𝑙
𝐷𝑘

(

𝑝𝑗 ,𝑙||𝑞𝑗 ,𝑙(𝜽<𝑙 ∪ 𝜽𝑗 ,𝑙)
)

(3)

where: 𝑧𝑗 ,𝑙 ∶  → R is the activation functions for neuron 𝑗 in
layer 𝑙 for DNN 𝑓 ; 𝜽<𝑙 = {𝜽𝑗 ,𝑙′ |𝑙′ < 𝑙} represents all transformation
parameters prior to layer 𝑙; 𝐷𝑘(𝑝||𝑞) ∶= E𝑞[𝑘(𝑝∕𝑞)] for a convex function
𝑘 ∶ [0,∞) → R satisfying 𝑘(1) = 0 and belonging to the family of
𝑓 -divergences for any distributions 𝑝 and 𝑞 [54].

However, in practice, we have the following challenges. Challenge
1: Unlike the distributions of clean samples {𝑝𝑗 ,𝑙}, which can be simply
approximated by feeding the small number of clean samples possessed
by the defender to the poisoned model6 and calculating the histograms
of internal activations, the distributions of backdoor-trigger samples
{𝑞𝑗 ,𝑙} are unknown. Challenge 2: The density form for the activation
of backdoor-trigger samples 𝑧𝑗 ,𝑙(𝛥(𝐗)) may get altered by the trigger 𝛥
and will likely be different from the density form for the activation of
clean samples 𝑧𝑗 ,𝑙(𝐗); moreover, both will likely be non-Gaussian. Thus,
minimizing Eq. (3) is not trivial. One cannot align the distributions by
e.g., simply matching the mean and variance.

To address Challenge 1, we approximate the distributions of true
backdoor-triggers samples by those of defender’s samples that are
embedded with the trigger(s) estimated by a post-training detector.
This can be accomplished with widely used post-training reverse-
engineering based backdoor detection (RED) approaches which have
the same assumption as in Section 4.1, e.g., the ones proposed by [19,

6 As previously discussed, mitigation methods should only be applied to a
model if it has been detected as poisoned.
5 
27,28,55]. These REDs investigate whether the classifier 𝑓 is compro-
mised by a backdoor attack and if so, infer the source and target classes
and estimate the associated backdoor trigger(s).7

To solve a broad range of attack settings, e.g., all-to-one and all-to-
all attacks, we apply the detection methods in a general way follow-
ing [28]. We first reverse-engineer a trigger by solving an optimization
problem defined on the clean set to get a detection statistic for each
ordered putative class pair (𝑠, 𝑡) ∈  × . A statistic which [28] suggests
is (the reciprocal of) the estimated perturbation size inducing high
(mis)classifications from 𝑠 to 𝑡. For [27], it is the estimated patch
size inducing high (mis)classifications from 𝑠 to 𝑡. Then we apply the
anomaly detection approach in [27], based on the MAD criterion [56],
to all the obtained statistics to find all the outlier statistics. We denote
the set of detected class pairs associated with these outlier statistics as
̂ , and denote ̂ = {𝑡 ∈  ∣ ∃𝑠 ∈  s.t. (𝑠, 𝑡) ∈ ̂} as the set of detected
target classes.

For each 𝑡 ∈ ̂ , we (re-)estimate a trigger 𝛥𝑡 (as a surrogate for the
true backdoor trigger, which is unknown) using clean instances from
all detected source classes8 ̂(𝑡) = {𝑠 ∈ |(𝑠, 𝑡) ∈ ̂}. Then, for each
detected target class 𝑡 ∈ ̂ , we construct a classifier 𝑔(⋅|𝜣𝑡) by solving the
distribution divergence minimization problem using the (re-)estimated
𝛥𝑡.

Now we address Challenge 2, which is critical to the estimation
of 𝜣𝑡 using the reverse-engineered trigger 𝛥𝑡 for each detected target
class 𝑡 ∈ ̂ . For simplicity, we will consider one target class and drop
the subscript 𝑡 below without loss of generality. Our main goals are:
(a) specifying the structure of the transformation function ℎ𝑗 ,𝑙 with its
associated parameters 𝜽𝑗 ,𝑙, (b) empirical estimation of the distribution
divergence in Eq. (3) using a clean dataset (i.e., the subset of clean
instances from classes in ̂(𝑡) for each detected class 𝑡), and (c) choosing
the convex function 𝑘 to specify the divergence form. For (a), we
consider the following transformation function with parameters 𝜽𝑗 ,𝑙 =
{𝜇𝑗 ,𝑙 , 𝜎𝑗 ,𝑙 , 𝜐𝑗 ,𝑙 , 𝜔𝑗 ,𝑙}:
ℎ𝑗 ,𝑙(𝑧) = max{min{

𝑧 − 𝜇𝑗 ,𝑙
𝜎𝑗 ,𝑙

, 𝜔𝑗 ,𝑙}, 𝜐𝑗 ,𝑙} (4)

where 𝜇𝑗 ,𝑙 and 𝜎𝑗 ,𝑙 specify the location and scale of the activation
distribution, respectively, while 𝜐𝑗 ,𝑙 , 𝜔𝑗 ,𝑙 control the shape of the tail of
the distribution. For goal (b), we quantize the real line into 𝑀 intervals
1 = (−∞, 𝑏1),2 = [𝑏1, 𝑏2),… ,𝑀 = [𝑏𝑀−1,∞), for 𝑀 sufficiently large.
Then the distribution divergence in Eq. (3) for each node 𝑗 and layer 𝑙

7 Note that these REDs can be the backdoor detectors used prior to applying
mitigation methods. Thus, there is no additional computation cost involved.

8 More reliable trigger estimation can be achieved in this way for a detected
target class, compared with estimating the trigger based on only one (source,
target) class pair.
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is computed on discrete distributions 𝑝̂𝑗 ,𝑙 and 𝑞𝑗 ,𝑙 over these intervals.
Specifically, the discrete distributions are estimated using a subset 𝑡
of instances from classes ̂(𝑡), with the probabilities for interval 𝑖
computed by:

𝑝̂(𝑖)𝑗 ,𝑙 =
1

|𝑡|

∑

𝒙∈𝑡

1[𝑧𝑗 ,𝑙(𝒙) ∈ 𝑖] and

𝑞(𝑖)𝑗 ,𝑙 =
1

|𝑡|

∑

𝒙∈𝑡

1[ℎ𝑗 ,𝑙(𝑧𝑗 ,𝑙(𝛥𝑡(𝐗)|𝜽<𝑙)|𝜽𝑗 ,𝑙) ∈ 𝑖].
(5)

To ensure that the distribution divergence is differentiable with
eference to the parameters, such that it can be minimized using (e.g.,)

gradient descent, we approximate the non-differentiable indicator func-
ion 1[⋅] in Eq. (5) using differentiable functions such as the sigmoid,
.e., we redefine:

1[𝑧 ∈ 𝑖] = 𝑠𝑖𝑔 𝑚𝑜𝑖𝑑(𝜏(𝑧 − 𝑏𝑖−1)) − 𝑠𝑖𝑔 𝑚𝑜𝑖𝑑(𝜏(𝑧 − 𝑏𝑖)) (6)

where 𝜏 is a scale factor controlling the error of approximation. For
1 and 𝑀 , which have semi-infinite support, we use a single sigmoid
in Eq. (6). The choice of the intervals and 𝜏 is not critical to the
erformance, as long as the length of the finite intervals is sufficiently
mall, as will be shown in Table 8 in Section 5. Finally, for goal

(c), we consider several different divergence forms including the total
variation (TV) divergence with 𝑘(𝑟) = |𝑟 − 1|∕2, the Jensen–Shannon
(JS) divergence with 𝑘(𝑟) = 𝑟 log 2𝑟

𝑟+1 + log 2
𝑟+1 , and the Kullback–Leibler

KL) divergence with 𝑘(𝑟) = 𝑟 log 𝑟. The choice of the divergence form
s also not critical to the mitigation performance (see Apdx. E).

We now provide a detailed explanation of our backdoor mitigation
ramework, which is visually summarized in Fig. 3. For any test input
∈  , if classifier 𝑓 is deemed attack-free, i.e., ̂ = ∅, the classification

output under our mitigation framework will be 𝑓 (𝒙) = 𝑓 (𝒙). Otherwise,
if 𝑓 (𝒙) ∈  ⧵ ̂ , we trust the class decision and set 𝑓 (𝒙) = 𝑓 (𝒙) both
because 𝒙 is unlikely to possess a trigger and because a successful
attack should not degrade the classifier’s accuracy on clean instances.
However, if 𝑓 (𝒙) = 𝑡 ∈ ̂ , there are two main possibilities: (1) 𝒙 is a
clean instance truly from class 𝑡; (2) 𝒙 is classified to class 𝑡 due to the
presence of the trigger. To distinguish these two cases, we feed 𝒙 to
the optimized 𝑔(⋅|𝜣𝑡). If 𝑔(𝒙|𝜣𝑡) ≠ 𝑓 (𝒙), 𝒙 likely contains a trigger,
and thus we should set 𝑓 (𝒙) = 𝑔(𝒙|𝜣𝑡), which is likely the original
source class of 𝒙 based on our theoretical results. Note that in the test-
time inference procedure above, the major (additional) computation for
both backdoor trigger instance detection and source class inference is
a forward propagation, feeding 𝒙 to 𝑔(⋅|𝜣𝑡), which is comparable to
the computation required for classification using 𝑓 . Moreover, such
additional computation occurs only if an attack is detected and 𝑓 (𝒙) = 𝑡;
thus, our test-time inference is very efficient.

5. Experiments

5.1. Experiment setup

Datasets: Our main experiments are conducted on the benchmark
IFAR-10 dataset, which contains 60,000 32 × 32 color images from
0 classes, with 5000 images per class for training and 1000 images

per class for testing [48]. We also show the effectiveness of our pro-
posed mitigation framework on other benchmark datasets including
GTSRB [57], CIFAR-100 [48], ImageNette [58], TinyImageNet [59],
and VGGFace2 [60]. Details of these datasets can be found in Apdx.B.1.
Data allocation in our experiments strictly follows the assumptions
in Section 4.1. For each dataset, we randomly sample 10% of the
test set to form the small, clean dataset Defense assumed for the
defender. The remaining test instances, denoted by Test, are reserved
or performance evaluation.
Attack settings: In this paper, we consider standard backdoor at-
tacks launched by poisoning the training set of the classifier [1,2].
In particular, we consider both the all-to-one (A2O) attacks and the
all-to-all (A2A) attacks in our main experiments on CIFAR-10. For
 s

6 
Algorithm 1: Backdoor Mitigation by Activation Distribution
Correction

Input: The detected target classes ̂ , the estimated trigger
embedding function 𝛥𝑡, ∀𝑡 ∈ ̂ , the detected source
classes ̂(𝑡), ∀𝑡 ∈ ̂ , the number of activation
distribution intervals 𝑀 , the clean dataset , and the
poisoned DNN 𝑓 (⋅).

Output: The activation transformation function parameters
𝛩𝑡, ∀𝑡 ∈ ̂ .

1 for Each detected target class 𝑡 ∈ ̂ do
2 Select the subset 𝑡 of instances from source classes ̂(𝑡)

from the clean dataset : 𝑡 = {(𝑥, 𝑦) ∈ |𝑦 ∈ ̂(𝑡)}.
3 Embed the estimated backdoor trigger to instances of 𝑡:

̃𝑡 = {(𝛥𝑡(𝑥), 𝑦)|(𝑥, 𝑦) ∈ 𝑡}.
4 for Each layer 𝑙 = 1,… , 𝐿 in DNN 𝑓 (⋅) do
5 for Each neuron 𝑗 = 1,… , 𝐽𝐿 in layer 𝑙 do
6 Calculate discrete distributions 𝑝̂𝑗 ,𝑙 for clean

instances from 𝑡:
𝑝̂𝑗 ,𝑙 = { 1

|𝑡|
∑

𝒙∈𝑡 1[𝑧𝑗 ,𝑙(𝒙) ∈ 𝑖]}𝑖=1,…,𝑀 .
7 Calculate discrete distributions 𝑞𝑗 ,𝑙 for triggered

instances from ̃𝑡: 𝑞𝑗 ,𝑙(𝜽𝑡𝑗 ,𝑙) =
{ 1
|̃𝑡|

∑

𝒙̃∈̃𝑡 1[ℎ(𝑧𝑗 ,𝑙(𝒙̃|𝜽
𝑡∗
<𝑙)|𝜽

𝑡
𝑗 ,𝑙) ∈ 𝑖]}𝑖=1,…,𝑀 .

8 Update transformation parameters for neuron 𝑗 in
layer 𝑙 𝜽𝑡𝑗 ,𝑙 by minimizing the KL divergence
between the clean and triggered instances
distributions: 𝜽𝑡∗𝑗 ,𝑙 = ar g min𝜽𝑡𝑗 ,𝑙𝐷𝐾 𝐿(𝑝̂𝑗 ,𝑙||𝑞𝑗 ,𝑙(𝜽𝑡𝑗 ,𝑙)).

9 return 𝛩𝑡 = {𝜽𝑡∗𝑗 ,𝑙}, ∀𝑡 ∈ ̂

A2O attacks on CIFAR-10, we arbitrarily choose class 9 as the target
class; while for A2A attacks, as described in Section 4.1, triggered
nstances from any class 𝑐 ∈  are supposed to be (mis)classified to

class (𝑐 + 1)𝑚𝑜𝑑||. For each attack setting, we consider the following
triggers: (1) a 3 × 3 random patch (BadNet) with a randomly selected
location (fixed for all triggered images for each attack) used in [1];
(2) an additive perturbation (with size 2/255) resembling a chessboard
(CB) used in [28]; (3) a single pixel (SP) perturbed by 75/255 with
a randomly selected location (fixed for all triggered images for each
ttack) used by [23]; (4) invisible triggers generated with 𝑙0 and 𝑙2

norm constraints (𝐥𝟎 inv and 𝐥𝟐 inv respectively) proposed by [6];
(5) a warping-based trigger (WaNet) proposed by [3]; (6) a Hello

itty blending trigger (Blend) used by [2]; (7) a trigger generated
y the horizontal sinusoidal function (SIG) defined in [61]. Details

for generating these triggers are deferred to Apdx.B.2. We randomly
created 5 attacks for each attack setting e.g. by randomly locating the
trigger. We also evaluated against the ‘‘label-consistent’’ (CL) backdoor
attack proposed by [62] on the CIFAR-10 dataset, which only embeds
the backdoor trigger into the target class training samples. Details are
iven in Apdx.B.2. For experiments on the other five datasets, we only
onsider A2O attacks for a subset of triggers where sufficiently high

success rate can be achieved. For each dataset, we create one attack
for each trigger being considered. A2A attacks are not considered for
these datasets since there is insufficient data per class for them to
achieve successful attacks. More details about the attacks, including the
number of backdoor-trigger images used for poisoning and the target
class selected to create A2O attacks for the five datasets other than
CIFAR-10, are shown in Apdx.B.2.
Performance evaluation metrics: (1) The attack success rate (ASR) is
he fraction of clean instances in Test (mis)classified to the designated

target class when the backdoor trigger is embedded. (2) The clean
test accuracy (ACC) is the DNN’s accuracy on Test without trigger
embedding. (3) The SIA (Definition 3.3) is the fraction of clean in-
tances in  classified to the original source class when the trigger is
Test
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Table 1
Average ACC, ASR, and SIA for BNA, compared with NC, NAD, I-BAU, ANP, and ARGD, against all the created attacks applied to ResNet-18 trained on the
CIFAR-10 dataset. Best performances are indicated in bold.
Trigger
type

BadNet CB 𝑙0 inv 𝑙2 inv SP WaNet

A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A

Vanilla
ACC 0.9122 0.9121 0.9135 0.9098 0.9135 0.9131 0.9130 0.9126 0.9138 0.9060 0.9032 0.8994
ASR 0.9573 0.8658 0.9685 0.8692 0.9989 0.8973 0.9889 0.8620 0.8912 0.8550 0.9153 0.8216
SIA 0.0397 0.0432 0.0293 0.0257 0.0010 0.0151 0.0107 0.0194 0.1016 0.0593 0.0772 0.0714

NC
ACC 0.8797 0.8762 0.8735 0.8776 0.8835 0.8767 0.8750 0.8690 0.8854 0.8614 0.8748 0.8756
ASR 0.0130 0.0154 0.0064 0.0155 0.0120 0.0150 0.0080 0.0179 0.0335 0.0188 0.0144 0.1381
SIA 0.8532 0.8614 0.8312 0.8597 0.8654 0.8650 0.7932 0.8254 0.8362 0.8477 0.8231 0.7183

I-BAU
ACC 0.8500 0.8758 0.8812 0.8719 0.8452 0.8800 0.8825 0.8726 0.8666 0.8745 0.8777 0.8700
ASR 0.0094 0.0164 0.1973 0.0811 0.0091 0.0133 0.2600 0.3353 0.0172 0.0154 0.1339 0.1253
SIA 0.8301 0.8583 0.6399 0.7756 0.8277 0.8673 0.5549 0.4928 0.8479 0.8609 0.7059 0.7269

ANP
ACC 0.8644 0.8492 0.8241 0.8577 0.8455 0.8648 0.8345 0.8421 0.8195 0.8411 0.8298 0.8607
ASR 0.0474 0.1199 0.3351 0.0927 0.0836 0.1326 0.4703 0.2648 0.1229 0.0495 0.0263 0.0835
SIA 0.8184 0.7205 0.4587 0.7168 0.7697 0.7324 0.3351 0.4976 0.7060 0.7942 0.7368 0.7451

NAD
ACC 0.8814 0.8819 0.8800 0.8908 0.8958 0.9047 0.8991 0.8781 0.8813 0.8761 0.8592 0.8963
ASR 0.0193 0.7132 0.0871 0.0681 0.0356 0.0457 0.0254 0.0191 0.0667 0.0647 0.0571 0.1056
SIA 0.8498 0.1520 0.7711 0.8084 0.8504 0.8534 0.8221 0.8337 0.8123 0.8082 0.7710 0.7773

ARGD
ACC 0.8689 0.8482 0.8800 0.8774 0.8880 0.8885 0.8669 0.8583 0.8899 0.8728 0.8739 0.8755
ASR 0.0368 0.0839 0.0099 0.0117 0.0079 0.0122 0.0125 0.0179 0.0955 0.0452 0.0111 0.0362
SIA 0.8217 0.7544 0.8657 0.8690 0.8725 0.8786 0.8168 0.8297 0.7934 0.8295 0.8283 0.8241

MCR
ACC 0.8751 0.8840 0.8126 0.8618 0.8534 0.8834 0.8688 0.8481 0.8886 0.8613 0.8808 0.8661
ASR 0.1447 0.1001 0.6015 0.1004 0.2900 0.0000 0.9769 0.0971 0.0136 0.1166 0.0268 0.0974
SIA 0.7572 0.0811 0.3151 0.1163 0.0927 0.1000 0.0210 0.3524 0.8570 0.2239 0.7999 0.7789

BNA
(ours)

ACC 0.9032 0.8951 0.9072 0.8615 0.9068 0.8944 0.9005 0.8638 0.9058 0.8921 0.8945 0.8792
ASR 0.0139 0.0189 0.0127 0.0202 0.0033 0.0111 0.0042 0.0168 0.0104 0.0225 0.0041 0.0191
SIA 0.8835 0.8841 0.8787 0.8820 0.8924 0.8942 0.8383 0.8522 0.8863 0.8811 0.8530 0.8607
m

t

embedded. For a successful backdoor attack, ASR and ACC should be
igh, while SIA should be low. For a successful mitigation approach,
he resulting ASR should be low, while ACC and SIA should be high.
Training settings: We train one classifier for each attack to evaluate
our mitigation approach against existing ones. Training configurations,
including the DNN architecture, batch size, number of epochs, etc., are
detailed in Tab.B.13 in Apdx.B.3. Data augmentation choices, including
random cropping and horizontal flipping, are applied to each training
instance. As shown in Table 1, the defenseless ‘‘vanilla’’ classifiers being
attacked achieve high ACC but suffer high ASR and low SIA (averaged
over the five attacks we created) for all trigger types and for both A2O
and A2A settings, i.e., the attacks are all successful and hence adequate
for performance evaluation.
Hyper-parameter settings: We compare our mitigation approach
named ‘Batch Normalization Alteration’ (BNA) in the sequel) with
ix well-known and/or state-of-the-art backdoor mitigation methods,
ncluding NC [27], NAD [42], I-BAU [44], ANP [39], ARGD [43],

and MCR [47]. Besides, we also consider two during-training backdoor
efense methods GeodesicAdv [63] and WaveletAdv [64]. For MCR,

in their original paper, the defender is assumed to have access to
wo poisoned models, which may be impractical. Thus, we fine-tune

the given model on the defender’s dataset and use it as the second
model (which is also suggested in their paper). For all these other
methods, we used their officially posted code for implementation. For
BNA, following Section 4.2, we first perform detection by reverse-
engineering a backdoor trigger for each class pair using objective
unctions from [27,28] and then feed the statistics obtained based on
he estimated trigger to an anomaly detector. Our anomaly detector is
ased on MAD, which is a classical approach also used by [27,35,55].

Here, we set the detection threshold at ‘‘7-MAD’’ which easily catches
all the backdoor class pairs. More details, including pattern estimation
and detection statistics are shown in Apdx.C. Then, for each detected
target class, we solve the divergence minimization problem to optimize
the transformation functions using learning rate 0.01 for 10 epochs.
Since our mitigation method applies simple transformations which are
also used in BN, we consider model structures that contain BN layers
(which is very common) for simplicity. But note that the proof of
7 
monotonicity of SIA with distribution divergence (Theorem 3.1) and
our method (Section 4.2) do not truly rely on the presence of BN
layers — one can always insert a BN layer between any two given
layers of the trained network. If a neuron is followed by a BN, instead
of applying an additional transformation function ℎ𝑗 ,𝑙, we treat the
mean and standard deviation of BN as the parameters 𝜇𝑗 ,𝑙 and 𝜎𝑗 ,𝑙
associated with ℎ𝑗 ,𝑙 respectively. We optimize the mean and standard
deviation by minimizing distribution divergence for all the BN layers.
In Section 5.2, we only show results for BNA with the total variation
divergence. Results for KL-divergence and JS-divergence are deferred
to Apdx.E. To compute the divergence, we use the ‘‘interval trick’’
(Eq. (5)) to obtain the discrete empirical distribution. For simplicity, we
let all finite intervals, 𝑖 = [𝑏𝑖−1, 𝑏𝑖), 𝑖 = 1,… , 𝑀 , have the same length
𝛥𝑏 = 0.1. For each neuron, we set 𝑏min and 𝑏max as the minimum and
maximum activations, respectively, when feeding in clean instances
from Defense to the poisoned classifier 𝑓 . Then, the number of intervals
is 𝑀 = ⌈

𝑏max−𝑏min
𝛥𝑏 ⌉; and all intervals can be specified by 𝑏0 = 𝑏min and

𝑏𝑖 = 𝑏𝑖−1+𝛥𝑏. Finally, the scale factor in Eq. (6) is set to 𝜏 = 150, which
is obtained by line search to minimize the total variation between
the ‘‘soft’’ distribution and the empirical one on Defense. In fact, the
choices for 𝛥𝑏 and 𝜏 (over reasonable ranges) have little impact on our

itigation performance, as shown in Table 8.

5.2. Backdoor mitigation results

In Table 1, we show the ASR, ACC, and SIA for BNA compared with
he other six methods (which are all DNN tuning-based) for attacks on

CIFAR-10. Each metric is averaged over the five attacks created for
each trigger type and attack setting, with the highest ACC and SIA,
and the lowest ASR in bold. We found that these tuning-based methods
are sensitive to the choices of hyper-parameters, such as the learning
rate. Hence, for these methods, we optimize the hyper-parameter val-
ues to show the best results for these methods in Table 1. Although
these tuning-based methods (except for MCR) can effectively deactivate
backdoor attacks (i.e., significantly reduce ASRs), there is a clear drop
(3%–20%) in both ACC and SIA, compared with those for the vanilla
DNN (the first row of Table 1). This is possibly due to tuning many
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Table 2
ACC, ASR, and SIA for BNA, compared with those of NC, NAD, I-BAU, ANP, and ARGD, against the ResNet-18 trained on the CIFAR-10 dataset
poisoned by the label-consistent (CL) backdoor attack.

Vanilla NC I-BAU ANP NAD ARGD MCR BNA

CL
ACC 0.9062 0.9061 0.1735 0.8998 0.3354 0.2362 0.8829 0.8967
ASR 0.9304 0.1444 0.4940 0.4632 0.0636 0.0581 0.7756 0.0594
SIA 0.0667 0.7558 0.0896 0.4977 0.2985 0.2349 0.1932 0.8057
Table 3
ACC, ASR, and SIA for BNA, compared with those of two adversarial training defense methods, against all-to-one attacks on CIFAR-10 datasets.
Trigger type BadNet CB 𝑙0 inv 𝑙2 inv SP WaNet

GeodesicAdv
ACC 0.8363 0.8477 0.8519 0.8474 0.8455 0.8364
ASR 0.9196 0.0082 0.9996 0.0000 0.0107 0.0000
SIA 0.0646 0.8392 0.0000 0.8407 0.8376 0.819

WaveletAdv
ACC 0.8137 0.8109 0.8172 0.8189 0.821 0.8163
ASR 0.9228 0.0093 1.0000 0.0125 0.0109 0.0137
SIA 0.0665 0.8041 0.0000 0.8093 0.8123 0.7983

BNA (ours)
ACC 0.9032 0.9072 0.9068 0.9005 0.9058 0.8945
ASR 0.0139 0.0127 0.0033 0.0042 0.0104 0.0041
SIA 0.8835 0.8787 0.8924 0.8383 0.8863 0.8530
Table 4
ACC, ASR, and SIA for BNA, compared with those of NC, I-BAU, ANP, NAD, ARGD, and MCR, with limited amount of clean data on VGGFace2
and CIFAR-10. Both datasets are poisoned by the BadNet attack.

VGGFace2 CIFAR-10

Vanilla NC I-BAU BNA Vanilla NC I-BAU ANP NAD ARGD MCR BNA

ACC 0.8989 0.8967 0.6828 0.8917 0.9122 0.8848 0.8539 0.6463 0.8731 0.4946 0.8650 0.9026
ASR 0.9771 0.9693 0.9737 0.0046 0.9573 0.2531 0.4175 0.0117 0.8880 0.0227 0.8078 0.0185
SIA 0.0216 0.0294 0.0196 0.8889 0.0397 0.6842 0.5148 0.6324 0.1007 0.4731 0.1684 0.8807
Table 5
ACC, ASR, and SIA for BNA as a function of (1) the number of poisoned instances injected into the training set; (2) the perturbation size under
all-to-one CB attack.

Number of poisoned instances per class Perturbation size (*255)

50 100 150 200 250 2 3 4 5 6

ACC 0.9112 0.9094 0.9098 0.9102 0.9015 0.9094 0.9041 0.9079 0.8992 0.8912
ASR 0.0095 0.0141 0.0121 0.0170 0.0090 0.0141 0.0395 0.0222 0.0109 0.0388
SIA 0.8851 0.8837 0.8728 0.8840 0.8662 0.8851 0.8783 0.8711 0.8814 0.8435
6

a

V

DNN parameters using very limited data. (Note that BNA mitigation
uses much less clean labeled data than what was reported for these
other methods in their original papers.) Though MCR can effectively
deactivate most of the backdoor attacks, excluding the global pattern
CB and 𝑙2 inv, it fails to infer the true source classes for the backdoor-
triggered instances. For ANP with neuron pruning, the performance is
acceptable only for A2O with the BadNet trigger. One possible reason
is that invisible, perturbation-based triggers affect most neurons only
moderately (which is also discussed in [65]); thus, pruning a small
number of neurons cannot mitigate the attack. In contrast, our method
successfully mitigates all these backdoor attacks (with generally the
best ACC and ASR compared with the others) regardless of the trigger
type and attack setting. Notably, since the purpose of BNA’s divergence
minimization is to maximize the SIA, it unsurprisingly achieves the best
SIA with a clear margin over all other methods, in all cases (the corre-
sponding distribution divergences are shown in Tab.D.15 in Apdx.D).
We also tune the poisoning ratio and perturbation size used in A2O CB
attacks, and the performance for BNA slightly declines as the attack is
strengthened, as shown in Table 5. However, it still outperforms the
ther methods (see Tab.F.17 in Apdx.F).

For the CL attack, we poison half (2500) of the target-class training
samples to achieve an effective attack (which is stronger than in the
original paper [62]), as shown in Table 2. Although NAD and ARGD
effectively deactivate the attack, both ACC and ASR drop significantly.
For NC, ANP, and MCR, the ACC after mitigation is almost the same as
the ACC before mitigation, but the ASR is still high. For ANP, nearly
alf of the backdoor-trigger images are unimpeded by the mitigation

ystem. The attack is still effective after MCR is deployed. I-BAU does

8 
not perform well in mitigating the CL attack — the mitigated model
fails to correctly classify most of the clean test images, but still recog-
nizes half of the backdoor-trigger images to the target class. By contrast,
BNA decreases the ACC by only a small amount, reduces ASR to around
%, and correctly classifies 80% of the backdoor-trigger images.

Apart from post-training backdoor mitigation methods, we also
assess the performance of our proposed method against adversar-
ial training approaches, which serve as during-training backdoor de-
fenses [63,64]. According to Table 3, adversarial training methods
perform well against imperceptible backdoor patterns (i.e., CB, 𝑙2
inv, SP, and WaNet) – the ASR is low and the SIA is close to the
ACC, indicating that the backdoor was not planted during training.
However, these methods struggle with perceptible backdoor patterns
(i.e., BadNet and 𝑙0 inv), where the ASR exceeds 90%. In contrast,
without access to the original training data, our method demonstrates
strong performance across various trigger types.

Results of BNA on other datasets are shown in Tables 4 and 6. We
first train a DNN on the VGGFace2 dataset poisoned by the BadNet
ttack. As shown in Table 4, the BadNet attack is effective, with a high

ASR and a nearly unchanged ACC. (The ACC for the DNN trained on the
clean VGGFace2 dataset is 0.9211.) We then apply BNA, NC, and I-BAU
on the poisoned DNN.9 For all mitigation methods, we only preserve 10

9 We did not evaluate the performance of ANP, NAD, and ARGD on
GGFace2, since these references do not provide the architecture of VGG-

16 that fits their respective mitigation system. Although MCR provides the
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Table 6
ACC, ASR, and SIA for BNA against all-to-one attacks on CIFAR-100, GTSRB, ImageNette, and TinyImageNet datasets.

Trigger
type

GTSRB CIFAR-100 TinyImageNet ImageNette

BadNet CB 𝑙0 inv 𝑙2 inv WaNet BadNet CB 𝑙0 inv 𝑙2 inv BadNet BadNet

Vanilla
ACC 0.9517 0.9556 0.9531 0.9521 0.9408 0.6796 0.6917 0.6863 0.6804 0.5192 0.8626
ASR 1.0000 1.0000 1.0000 0.9794 0.9000 0.9037 0.9169 0.9935 0.9097 0.8058 0.9144
SIA 0.0000 0.0000 0.0000 0.0169 0.0905 0.0781 0.0646 0.0063 0.0707 0.1134 0.0771

BNA
ACC 0.9491 0.9548 0.9505 0.9500 0.9404 0.6770 0.6863 0.6858 0.6787 0.5178 0.7941
ASR 0.0000 0.0000 0.0122 0.0001 0.0041 0.0002 0.0524 0.0062 0.0016 0.0043 0.0016
SIA 0.9312 0.9454 0.9330 0.8945 0.9338 0.6526 0.5880 0.6169 0.5224 0.4965 0.7940
Table 7
ACC, ASR, and SIA for BNA, compared with those of NC, NAD, I-BAU, ANP, and ARGD, against the ResNet-18 trained on the CIFAR-10 dataset
poisoned by the all-to-one Blend and SIG backdoor attacks.

Vanilla NC I-BAU ANP NAD ARGD BNA

Blend
ACC 0.9264 0.8132 0.7932 0.8667 0.8221 0.4856 0.8942
ASR 0.9731 0.0488 0.7419 0.5119 0.0521 0.0782 0.1283
SIA 0.0254 0.5593 0.1427 0.3369 0.6003 0.4181 0.6252

SIG
ACC 0.9266 0.8234 0.5696 0.8251 0.7794 0.4233 0.8716
ASR 0.9991 0.1414 0.2594 0.9451 0.3223 0.0988 0.0158
SIA 0.0008 0.2980 0.1319 0.0383 0.2503 0.3271 0.3357
Table 8
ACC, ASR, and SIA for BNA as a function of scale factor and bin size on ResNet-18 trained on CIFAR-10 poisoned by all-to-one BadNet attack.
𝜏 (𝛥𝑏=0.1) 10 100 200 300 400 500 600 700 800 900 1000

ACC 0.9024 0.9025 0.9022 0.9019 0.9024 0.9019 0.9022 0.9018 0.9017 0.9015 0.9021
ASR 0.0257 0.022 0.0206 0.0207 0.0214 0.0202 0.0212 0.0209 0.0207 0.0201 0.0204
SIA 0.8744 0.8758 0.8774 0.8768 0.8768 0.8775 0.8773 0.8768 0.8772 0.8778 0.8777

𝛥𝑏 (𝜏=150) 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

ACC 0.9028 0.9018 0.9019 0.9023 0.9019 0.9023 0.9019 0.9019 0.9022 0.9022 0.9022
ASR 0.0197 0.0202 0.0199 0.0204 0.0199 0.0204 0.0198 0.0206 0.0206 0.0207 0.0212
SIA 0.8799 0.8775 0.8779 0.8773 0.8772 0.8779 0.8773 0.8767 0.8779 0.8769 0.8764
m
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clean images per class since there is a severely limited number of sam-
ples for VGGFace2. BNA effectively reduces the ASR and yields a high
SIA, outperforming the other mitigation methods. We will thoroughly
discuss the impact of the number of clean images possessed by the
defender in Section 5.6. The ACC for DNNs trained without attack for
GTSRB, CIFAR-100, ImageNette, and TinyImageNet are 0.9567, 0.6926,
0.8726, and 0.5224, respectively; while ACC, ASR, and SIA for attacked
DNNs are shown in the row ‘‘Vanilla’’ in Table 6, which demonstrate
hat all the attacks are effective. We apply BNA on the poisoned DNNs,
ith the same settings as for CIFAR-10, which significantly reduces ASR

to less than 1.3% in all cases), with uniformly high SIA and ACC.
We also evaluated the performance of our BNA against all-to-one

ackdoor attacks that utilize more complex global backdoor patterns,
such as the blended backdoor attack [2] and Sinusoidal Signal back-
oor attack (SIG) [61]. Details of the attack configurations can be
ound in Apdx.B.2. The performance of our BNA as well as other

mitigation methods are shown in Table 7. The results demonstrate
the effectiveness of our BNA mitigation method even when dealing

ith complicated backdoor patterns. Compared with the other meth-
ds,10 our BNA significantly reduces the ASRs and produces relatively

satisfactory SIAs, while maintaining ACCs that are competitive with
re-mitigation figures.

5.3. The ‘‘detection-before-mitigation’’ scenario

As discussed in Section 4.1, BNA performs backdoor mitigation only
fter the model has been detected as backdoor-poisoned. To justify the

architecture of VGG-16, it is different from the one provided by PyTorch.
herefore we cannot load the pre-trained weights and make a fair comparison.
10 We were not able to reproduce the results reported in the published
apers describing these methods due to different defense settings — in our
xperiments, the defender possesses far fewer clean samples.
 P

9 
‘‘detection-before-mitigation scenario’’, we first apply the mitigation
ethods that do not involve a detection system (i.e., I-BAU, ANP,
AD, ARGD, and MCR) on a ResNet-18 trained on the attack-free
IFAR-10 dataset. The resulting (absolute) drop in ACC is shown in

column ‘‘clean’’ in Table 10. ANP has the largest impact on ACC — the
ACC drops by 0.1877 after mitigation. I-BAU and ARGD respectively
decrease the ACC by 0.0684 and 0.0343. NAD and MCR keep the ACC
almost as high as that of the vanilla model, but they are not sufficiently
effective in terms of SIA when the model is poisoned. NC and BNA
detect the backdoor attack before mitigation; thus there is no impact
n the ACC for clean classifiers (for which no attack is detected). We
lso found reduction in ACCs when applying all mitigation methods
or a ResNet-18 model trained on CIFAR-10 poisoned by an all-to-one
adNet attack in column ‘‘BadNet’’. All the other methods decrease ACC
y more than 0.03, while our method has little impact on ACC.

5.4. Test-time backdoor-trigger instance detection

Different from other tuning-based backdoor mitigation approaches,
ur BNA can also detect backdoor-trigger instances at test-time, as

described in Section 4.2 and shown in Fig. 3. Here, we evaluate
accuracy of our test-time detector compared with a state-of-the-art
etector named STRIP [22]. For any input image during inference,

STRIP blends it with clean images possessed by the defender. The
blended image is fed into the poisoned DNN, with an entropy calculated
on the output posteriors. If the entropy is lower than a prescribed
etection threshold, the input is deemed to be embedded with the
rigger. Here, we set the detection threshold to achieve 15% FPR for

STRIP, a choice which achieves a generally good trade-off between
TPR and FPR. In contrast, BNA does not require setting a detection
threshold. In Table 9, we show the True Positive Rate (TPR, i.e., the
raction of backdoor-trigger images correctly detected) and the False
ositive Rate (FPR, i.e., the fraction of clean test images from the
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Table 9
TPR and FPR for BNA, compared with STRIP, against all attacks created on CIFAR-10.

Trigger
type

BadNet CB 𝑙0 inv 𝑙2 inv SP WaNet

A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A

BNA FPR 0.1390 0.0606 0.1144 0.1092 0.1413 0.0600 0.1976 0.1027 0.1323 0.0656 0.1406 0.0865
TPR 0.9872 0.9508 0.9872 0.9682 0.9967 0.9873 0.9958 0.9793 0.9894 0.9294 0.9959 0.9248

STRIP FPR 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
TPR 0.9638 0.5147 0.6802 0.2089 0.9995 0.1053 0.9924 0.5272 0.8522 0.3123 0.0202 0.0411
Table 10
Drop in ACC when applying I-BAU, ANP, NAD, ARGD, NC and BNA on ResNet-18 trained on the clean (attack-free) CIFAR-10 dataset and trained on CIFAR-10 poisoned by the
all-to-one BadNet attack.

I-BAU ANP NAD ARGD MCR NC BNA

Clean BadNet Clean BadNet Clean BadNet Clean BadNet Clean BadNet Clean BadNet Clean BadNet

0.0684 0.0622 0.1877 0.0478 0.0064 0.0308 0.0343 0.0433 0.0038 0.0371 NA 0.0325 NA 0.0090
t
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backdoor target class(es) that are falsely detected) for both methods.
Although STRIP performs well on A2O attacks for some trigger types,
e.g., BadNet, 𝑙0 inv, and 𝑙2 inv, its TPR drops drastically on attacks using
human-imperceptible triggers, especially the WaNet attacks. Moreover,
it does not perform well on all A2A attacks, with a largest TPR of only
0.5272. By contrast, BNA is effective for all these attacks — it detects
almost all the backdoor-trigger images, with FPRs comparable to STRIP.

5.5. Mitigation performance against adaptive attacks

A recent backdoor attack proposed by [66] minimizes a metric
imilar to that used by our BNA defense, in order to achieve better

stealthiness. This attack can be viewed as an adaptive attack against
our mitigation defense since the trained classifier will be more sensitive
to even a smaller distribution divergence than for ordinary backdoor
attacks. Nevertheless, our method successfully mitigates this attack. In
our experiment on CIFAR-10, the average distribution total variation
divergence over all neurons is reduced from 8067 to 2789. Accord-
ingly, the ACC/ASR before and after mitigation are 0.9162/0.9978 and
0.8906/0.0072, respectively, with an SIA of 0.8496.

5.6. Mitigation with a limited amount of clean data

Why tuning-based methods like NC cannot achieve SIAs as high as
BNA (which does not alter the DNN’s parameters) ? Note that NC tunes
the classifier using instances embedded with the estimated trigger but

ithout label flipping. This is equivalent to minimizing the divergence
etween internal activation distributions for clean and triggered in-
tances (see Tab.D.15 in Apdx.D), but by altering the DNN’s parameters.
ven for an optimal (zero) divergence, the best achievable SIA of
C is still upper-bounded by the ACC of the classifier after tuning,
hich usually drops due to the data insufficiency. By contrast, the

eference distribution for BNA’s divergence minimization is obtained by
eeding clean instances to the poisoned classifier without changing its
arameters; thus, it is a ‘‘better’’ reference with a higher upper-bound
CC.

For the main experiments on CIFAR-10, we preserve 100 clean
test images for all mitigation methods. In other words, all mitigation
methods, excluding our BNA, tune the (around 11 million) trainable
arameters of the poisoned ResNet-18 based only on 1000 clean labeled
mages (2% of the training set) for a few epochs. Our method is

light-weight, since it only updates the (less than 10 thousand) non-
trainable parameters (i.e., mean and standard deviation). Note that
ll the mitigation methods use more clean images in their original
apers than in the experiments reported herein. For example, NC and
AD respectively chose 10% and 5% of the clean training samples

or mitigation. For all mitigation methods, excluding our BNA, the
nsufficiency of clean labeled data reduces the ACC by at most 10%.
he SIA is upper-bounded by the ACC after mitigation and is also
 a

10 
Table 11
Time (in seconds) used for deploying the proposed mitigation methods on ResNet-18
rained CIFAR-10 dataset.
Defense BadNet CB 𝑙0 inv 𝑙2 inv SP WaNet

BNA (ours) 156.81 161.63 162.45 160.43 160.09 149.83

affected by data insufficiency. This is also verified in [42], where they
varied the number of clean images from 0% to 20% of the clean training
amples, with the performance of NAD significantly degraded as the
umber of clean samples decreases. Our BNA only aligns internal layer
istributions without affecting the trainable parameters, and thus is
ore robust when the amount of clean samples is limited.

To further demonstrate the impact of the number of clean samples
on mitigation performance, for the ResNet-18 trained on CIFAR-10
poisoned by the BadNet attack, we reduce the number of clean images
used by the defender to just 10 images per class. The corresponding
erformance of all mitigation methods is shown in Table 4. Although

ANP and ARGD effectively de-activate the backdoor attack, both ACC
and SIA dramatically decrease. For NC, I-BAU, NAD, and MCR, the ACC
changes a little, but the attack is still effective, especially for NAD and
MCR. However, our BNA is still effective, with the ASR less than 2%
and both ACC and SIA comparable to the ACC before mitigation.

Data insufficiency is a common phenomenon in real-world applica-
ions. For example, we use a subset of VGGFace2, which consists of 18

identities, each of which has 450 training face images and 100 test face
images. So, VGGFace2 is much smaller than other benchmark datasets
such as CIFAR-10. We only assign 10 clean images per class for the
defender. The results are shown in Table 4. On this high-resolution and
insufficient dataset, both NC and I-BAU fail to de-activate the BadNet
attack. In contrast, our BNA successfully reduces the ASR to 0.46% and
has ACC and SIA about 89%.

5.7. Time complexity

We report execution times of our mitigation method under all
attacks in the ‘‘all-to-one’’ setting in Table 11. Our experiments utilize
n NVIDIA RTX 3090 GPU with 24 GB of memory. The execution time

of our method does not exceed 165 s for any attack. For comparison,
training a Resnet-18 on CIFAR-10 for 30 epochs takes approximately
20 min.

6. Conclusion

In this paper, we revealed an activation distribution alteration
property for backdoor attacks. We theoretically proved that by cor-
recting such alteration, backdoor trigger instances will be correctly
classified to their original source classes. Accordingly, we proposed
 post-training backdoor mitigation approach to align distributions of
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clean and backdoor-trigger samples through simple transformations,
without changing millions trainable parameters of the classifier, which out-
performed methods that use DNN fine-tuning. The proposed method is
robust especially when there is limited amount of clean data available to
the defender, compared with parameter-tuning based methods. Besides,
the proposed method is flexible to be integrated with existing detection
systems. Moreover, our method can detect instances with the trigger
during inference.
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