
2023 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2023, ROME, ITALY

A BIC-BASED MIXTURE MODEL DEFENSE AGAINST
DATA POISONING ATTACKS ON CLASSIFIERS

Xi Li, David J. Miller, Zhen Xiang and George Kesidis

the School of EECS, Pennsylvania State University, University Park, PA, 16802

ABSTRACT

Data Poisoning (DP) is an effective attack which degrades a
trained classifier’s accuracy through covert injection of attack
samples into the training set. We propose an unsupervised
Bayesian Information Criterion (BIC)-based mixture model
defense against DP attacks that: 1) addresses the most chal-
lenging embedded DP scenario wherein, if DP is present, the
poisoned samples are an a priori unknown subset of the train-
ing set, and with no clean validation set available; 2) applies
a mixture model to both well-fit potentially multi-modal class
distributions and capture poisoned samples within a small
subset of the mixture components; 3) jointly identifies poi-
soned components and samples by minimizing the BIC cost
defined over the whole training set. Our experimental results
demonstrate the effectiveness of our defense under strong DP
attacks, as well as its superiority over other works.

Index Terms— Adversarial learning, Data poisoning at-
tack, Anomaly detection, Mixture model, Bayesian Informa-
tion Criterion

1. INTRODUCTION

Machine learning systems are vulnerable to maliciously
crafted inputs [22]. In this work, we address “error generic”
data poisoning attacks (hereafter called DP attacks) [2, 28,
9, 18, 20, 23] against models trained for classification tasks,
which aim to degrade the overall classification accuracy. DP
attacks involve the insertion of “poisoned” samples into the
training set of a classifier. To effectively mislead classifier
training with few poisoned samples, attackers introduce fea-
ture collision[14] by e.g., label-flipping attacks[1], prevent-
ing accurate class decision boundary learning. DP attacks
have been successfully demonstrated against Support Vector
Machines (SVMs) [28], Logistic Regression (LR) models
[9], collaborative filtering systems [18], differentially-private
learners [20], and neural networks (NN) [23].

A general and challenging attacking setting remains
largely unsolved: if DP exists, the poisoned samples are
an unknown subset embedded among the clean training sam-
ples. That is, the defender does not know whether an attack
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is present, and if so, which samples are poisoned and which
class(es) are corrupted. Most studies on defending against
such attacks make assumptions on, e.g., the type of classifier
[9, 7], the type of DP attack [25], and/or the training data
(e.g., possessing a clean validation set[24, 3]). The proposed
method does not make any such assumptions.

Poisoned samples are generally atypical of the class to
which they are labeled. We thus apply mixture modeling [21]
to accurately explain the potentially multi-modal data and to
capture poisoned samples within a subset of mixture compo-
nents. We expect that re-assigning atypical samples to other
classes should increase the overall data likelihood. Further-
more, removing a poisoned component (and re-assigning its
samples to the best-fitting components from other classes)
will reduce the model complexity of a mixture. Thus, both the
data likelihood and model complexity terms that together con-
stitute the Bayesian Information Criterion (BIC) [26] should
improve through such sample re-assignments. That is, we
propose to make poisoned sample inferences consistent with
minimizing BIC.

In summary, our BIC-based defense is 1) Novel: To our
knowledge, we are the first to formulate a BIC-based defense
for unsupervised anomaly detection/DP attack mitigation; 2)
Practical: We address the challenging embedded DP attack
scenario, potentially involving multiple poisoned classes,
without requiring a clean validation set; 3) Effective: The
experimental results on several datasets and various classifier
structures demonstrate the effectiveness of our defense under
strong DP attacks, as well as its superiority over other works.

2. RELATED WORK

[25] relabels a sample based on the plurality label of its
K nearest neighbors (KNN) to enforce label homogeneity.
[7] detects outliers by applying singular value decomposition
(SVD) to the matrix of gradients, with each row of this matrix
the sample-wise gradient, with respect to all the model param-
eters. A training sample is declared an outlier if the squared
magnitude of the projection of the gradient onto the top right
singular vector is abnormally large. [14] mitigates the effects
of DP by gradient shaping (GS), i.e., constraining the magni-
tude and orientation of poisoned gradients to make them close
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to clean gradients. [19] applied a BIC-based defense against
DP attacks for binary classification tasks, assuming that the
attacker only poisons one of the two classes, with this class
known to the defender. [3] employs generative adversarial
networks for synthetic clean data generation based on the
clean dataset possessed by the defender, on which a mimic
model is trained. Samples that have different predictions from
the mimic model and the target model are deemed poisoned.
[17, 27] employ aggregated base classifier predictions trained
on data subsets for DP attack mitigation, minimizing the tar-
get model’s sensitivity to dataset distortions. [17] partitions
the training set into disjoint subsets using a deterministic
function (e.g., hash function), while [27] improves certified
robustness bounds by combining duplicates of the disjoint
subsets.

However, [25, 14, 7, 17, 27] are supervised detection
methods, with their performances highly impacted by the (su-
pervised) choice of their hyper-parameters (e.g., K in [25]).
Also, [7, 17, 27] are computationally expensive. [25, 14]
are computationally cheap, but their efficacies dramatically
degrade as the number of poisoned samples increases (cf .
Sec. 5.2). Besides, in practice, the attacker may label-flip
data originating from more than one class, with these classes
unknown to the defender. Under this challenging attack sce-
nario, [19] may fail even if only one class is poisoned, as the
defender might sanitize the clean class based on the poisoned
one (cf . Tab. 1 and 2). By contrast, our method is unsuper-
vised, applicable to multi-class settings, and does not require
a clean validation set.

3. THREAT MODEL

We consider W -class (W ≥ 2) classification tasks, where the
classifier, denoted f : Rd → Y ≡ {1, . . . ,W}, is trained
on DTrain and then tested on DTest. DTrain and DTest, with
both assumed i.i.d. from the same distribution. Each feature
xl, l = 1, . . . , d, may be either discrete or continuous-valued.
Both feature types will be considered in our experiments.

We assume the attacker: 1) has sufficient knowledge of
the classification domain to to procure legitimate samples;
2) poisons these samples by label-flipping; 3) is able to in-
sert poisoned samples into the training set (DTrain = DClean ∪
DAttack); 4) may poison any subset of classes with different
attack strengths; 5) is unaware of any deployed defenses. The
attacker’s goal is to significantly degrade the classifier’s gen-
eralization accuracy. We assume the defender: 1) only uses
the training set DTrain manipulated by the attacker, without ad-
ditional clean (attack-free) samples; 2) is unaware if an attack
is present, and if so, which samples are poisoned, or which
classes are corrupted. The defender aims to: 1) identify and
remove as many poisoned samples as possible and as few
clean samples as possible before classifier training/retraining;
and 2) achieve classification accuracy close to that for an un-
poisoned training scenario.

4. BIC MIXTURE-BASED SANITIZATION

We highlight the intuition behind our proposed strategy:
First, poisoned samples form different sub-populations from
normal samples. Thus, we apply mixture modeling to each
class to well-fit potentially multi-modal class distributions
[8, 21] and to isolate poisoned samples within a few compo-
nents1. Second, the likelihood of the whole dataset would in-
crease if poisoned samples are re-assigned to the true classes,
and the complexity of the mixture model would decrease
if a component formed by poisoned samples is removed or
revised. Therefore, we aim to identify and re-assign poi-
soned samples, and remove/revise poisoned components,
such that the overall data likelihood increases and the model
complexity decreases. The Bayesian Information Criterion
(BIC) [26] expresses a tradeoff between data likelihood fit
and model complexity. Accordingly, we develop an unsuper-
vised method to mitigate data poisoning via locally optimal
minimization of the BIC objective.

In this work, we consider the complete data BIC objec-
tive function, based on the complete data log-likelihood func-
tion [6], wherein each data sample is hard (fully) assigned to
the mixture component under which it has the greatest log-
likelihood2: BICcmplt = |θ|k −

∑W
c=1

∑Mc

j=1 L
c
j , where θ is

the set of parameters specifying a density function model for
the data, |θ| is the number of free parameters in this set, k
is the cost (penalty) for describing an individual model pa-
rameter and is found to be k = 0.5 ∗ log(|Dtrain|) within
an approximate Bayesian setting [16]. Mc is the number of
mixture components in the density for class c. The complete
data log-likelihood for the data from component j in class c is
Lc
j =

∑
x∈X c

j
logP [x; Λc

j ], where P [·; Λc
j ] is the jth mixture

component density under class c, Λc
j is the set of parameters

specifying the component density, and x ∈ X c
j if and only if,

for x labeled to class c, P [x; Λc
j ] ≥ P [x; Λc

j′ ] ∀j′ ̸= j. Note
that θc = {Λc

j} and θ =
⋃

c θc.

4.1. BIC-based Defense

Recall Y = {1, . . . ,W},W ≥ 2, is the set of classes, and
let T = |DTrain| be the total number of training samples. Let
(xi, yi) ∈ Rd ×Y represent the feature vector and class label
for training sample i. Denote Ω and L as the model complex-
ity and data log-likelihood, respectively. M c is the number of
components in class c. Each component, with a set of param-
eters Λc

j , specifies a joint probability mass function (PMF) or
probability density function (PDF), depending on whether the
data is discrete or continuous-valued.

The model parameters θc of the mixture for class c are
estimated via the Expectation-Maximization (EM) algorithm

1Note that, in practice, poisoned components may own both poisoned and
untainted samples, with the poisoning ratio for each component unknown.

2Here we assume the component priors {αc
j} are uniform and hence they

are absent from the complete data log likelihood. In practice, these terms do
not affect detection performance significantly.



[6], applied to the subset of Dtrain labeled as class c. The
chosen model order M c is the one that yields the least BIC
cost over the set {1, . . . ,M c

max} [26], with M c
max an upper

bound on the number of components in class c’s mixture3.
Finally, let S = {(c, j)|c = 1, . . . ,W, j = 1, . . . ,M c} be the
set of components across all classes.

Our data sanitization strategy is consistent with BIC min-
imization, which involves sample re-assignments, component
removals/revisions, and parameter updates. To reflect these
model changes, we introduce several “indicator” variables:

(1) (ti, ji) = argmaxt∈{1,...,W}, j∈{1,...,Mt} P [xi; Λ
t
j ] is

the class and component that best-explain sample xi;
(2) rcj is set to 1 if component j in class c is poisoned and set
to 0 if it is not;
(3) qcj is set to 1 if component j in class c needs to be revised
and set to 0 if component j in class c needs to be removed.
Note that qcj is configured only when rcj = 1.

To account for possible data poisoning, the complete data
BIC cost to be minimized is

BICcmplt(θ) =

W∑
c=1

Mc∑
j=1

((1− rcj(1− qcj ))k|Λc
j |+ 1 + δ(rcj , 1))

−
W∑
c=1

Mc∑
j=1

((1− rcj)L
c
j(Λ

c
j) + rcj

∑
xi∈Xc

j

logP [xi; Λ
ti
ji
]). (1)

In (1), the model parameters are θ = {{Λc
j}, {rcj}, {qcj}},

where the structural parameters rcj and qcj each require one
bit to specify (hence the ‘1’ and δ(rcj , 1) contributions to the
model complexity term). By contrast, ti and ji are hidden
data assignments (as part of the complete data log-likelihood),
not model parameters. Note in (1) that if component (c, j) is
removed the model complexity decreases by k|Λc

j |.
To minimize (1) in a locally optimal fashion, our approach

involves cycling over the mixture components, one at a time,
effecting the change (sample reassignments, component re-
moval, or no change) that reduces BIC the most. Accordingly,
the new BIC cost can be expressed as the old BIC cost plus
the (negative) change resulting from sample re-assignments
or component removal/revision, denoted ∆BICc

j .
Each feasible joint configuration of the variables for com-

ponent (c, j) corresponds to one of three cases:
(1) rcj = 0: The component is formed by clean samples,

and there is no need to re-distribute its samples or modify the
component (i.e., ∆Ωc

j,1 = 0, ∆Lc
j,1 = 0). The change in BIC

in this case is thus ∆BICc
j = 0.

(2) rcj = 1, qcj = 0: Component j is poisoned, and we
are choosing to remove it from the mixture, changing the
model complexity term by ∆Ωc

j,2 = −|Λc
j | 12 log T . Each

sample xi ∈ X c
j is re-assigned to component ji of class

ti, where (ti, ji) = argmax(t,j′)∈S\{(c,j)} logP [xi; Λ
t
j′ ].

3Mc
max is not a hyper-parameter, as one can observe the changes of BIC

to adjust the range of model orders. For example, if Mc
max yields the least

BIC, one can increase Mc
max and repeat model selection until Mc ̸= Mc

max.

Let Q = {(ti, ji)|∀i, xi ∈ X c
j } be the set of compo-

nents which receive the re-assigned samples. For each
component (w, j′) ∈ Q, we re-estimate its parameters on
X̂w

j′ by maximum likelihood estimation (MLE): Λw,new
j′ =

argmaxΛ
∑

xi∈X̂w
j′
logP [xi; Λ], where X̂w

j′ = Xw
j′ ∪ {xi ∈

X c
j |ti = w, ji = j′}. This optimization has a closed form,

globally optimal solution for the component density model
forms considered in this paper. The total data log-likelihood
changes by

∆Lc
j,2 =

∑
(w,j′)∈Q

∑
xi∈X̂w

j′

logP [xi; Λ
w,new
j′ ]

−
∑

(w,j′)∈Q

∑
xi∈Xw

j′

logP [xi; Λ
w
j′ ]−

∑
xi∈Xc

j

logP [xi; Λ
c
j ].

The change in BIC in this case is ∆BICc
j = ∆Ωc

j,2 −∆Lc
j,2.

(3) rcj = 1, qcj = 1: Similar to case (2) but instead
of removing it, we re-estimate the parameters of compo-
nent j by its surviving samples (i.e., samples with ti = c).
Revising a component does not change the model com-
plexity cost, i.e., ∆Ωc

j,3 = 0. The parameters Λc
j are re-

estimated by MLE on the surviving samples: Λc,new
j =

argmaxΛ
∑

xi∈X̂ c
j
logP [xi; Λ], where X̂ c

j = {xi ∈ X c
j |ti =

c}. Samples that are best represented by class ti = w ̸= c are
re-distributed to their fittest components in class w, but the
remaining samples (i.e., ti = c) are explained by the updated
component j. Let Q′ = {(w, j′) ∈ Q|w ̸= c} ∪ {(c, j)}
be the set of components to be updated. The total data log-
likelihood changes by:

∆Lc
j,3 =

∑
(w,j′)∈Q′

∑
xi∈X̂w

j′

logP [xi; Λ
w,new
j′ ]

−
∑

(w,j′)∈Q′

∑
xi∈Xw

j′

logP [xi; Λ
w
j′ ],

where X̂w
j′ and Λw,new

j′ ∀(w, j′) ∈ Q′ \ {(c, j)} are defined
in the same way as in case 2. The BIC change in this case is
∆BICc

j = −∆Lc
j,3.

4.2. Implementation

The optimal configuration for any component j depends on
the configurations for other components. It is thus intractable
to define an algorithm guaranteed to find a globally optimal
configuration over all components. Instead, at each optimiza-
tion step, we separately trial-update each component’s con-
figuration, and then only permanently update the component
that yields the greatest reduction in BIC. This is repeated un-
til there are no further changes. This optimization approach
is non-increasing in the BIC objective and results in a locally
optimal solution. Finally, all samples with ti ̸= yi (i.e., the
detected poisoned samples) are removed from the training
set, and we have the sanitized training set D̂Train = {xi ∈
DTrain|ti = yi}, which will be used to learn the classifier. See
the corresponding Algorithm 1 pseudocode.



Algorithm 1: BIC-Based DP Attack Defense
Input : DTrain = {(xi, yi)}Ni=1, {Λc

j}j=1,...,Mc, c∈{1,...,W}

Output: D̂Train
rcj = 0, qcj = 0, ∀c, j ;
ti = yi, ∀i;
∆BICc

j = 0, ∀j, c;
do

for c ∈ {1, . . . ,W} do
for each component j in class c do

compute BIC reduction from j
∆BICc

j = min{∆Ωc
j,m +∆Lc

j,m}3m=1;
configure {ti|∀xi ∈ X c

j }, rcj , qcj consistent with
∆BICc

j ;
(c∗, j∗) = argminc∈{1,...,W},j=1,...,Mc ∆BICc

j ;

if rc
∗

j∗ = 1 then
For xi ∈ X c∗

j∗ , if ti ̸= c∗, re-distribute xi to component

m = argmax
m′

logP [xi; Λ
ti
m′ ] in class ti and then

update component m’s parameters via MLE;
if qc

∗
j∗ = 0 then

remove component j∗ from {Λc∗
j }j=1,...,Mc∗ ;

re-distribute each xi ∈ X c∗
j∗ to component

m = argmax
m′

P [xi; Λ
c∗
m′ ] and update component

m’s parameters;
else

update component j∗’s parameters on X c∗
j∗ ;

while
∑

c,j ∆BICc
j < 0;

D̂Train = {xi ∈ DTrain|ti = yi};

5. EXPERIMENTS

5.1. Experiment Setup

Dataset and mixture model: For binary (W = 2) classifica-
tion, we use the TREC 2005 spam corpus (TREC05) [4], with
9000 ham and spam emails for training and 3000 each for
testing. The remaining samples are used for poisoning. For
multi-class (W > 2) classification, we use the first 5 classes
of the CIFAR10 [15] dataset. In each class, 4000 images are
for training, 1000 for testing, and 800 for poisoning.

For TREC05, we represent each email using a bag-of-
words and apply Parsimonious Mixture Modeling (PMM)
[11] on each class. Each PMM component is a multinomial
joint PMF. For CIFAR10, we trained Gaussian mixture mod-
els (GMMs) on the 512-dimensional feature vectors extracted
from the penultimate layer of a pre-trained NN classifier. To
reduce the model complexity, we assumed the features are
independent conditioned on the mixture component of origin.

DP attack and target classifiers: We launched label flip-
ping data poisoning attacks (LPDP) [1] on both datasets. For
half of the binary classification attacks, we only poisoned
the spam set, randomly selecting ham samples and misla-
beling them as spam. For the remaining attacks, we simul-
taneously poisoned both ham and spam with varying attack
strengths (AS, denoted as (number of poisoned ham, num-
ber of poisoned spam)), as seen in Tab. 1 and 2. For multi-
class classification, we launched 5 DP attacks. For each at-

tack i = 1, . . . , 5, we took samples from classes c = 1, . . . , i
and randomly mislabeled them to any of the other classes.

We chose linear SVM [5] and bi-directional one-layer
long short-term memory (LSTM) [13] recurrent neural net-
works with 128 hidden units as the target classifiers for
TREC05. We chose ResNet-18 [12] for CIFAR10.

Evaluation criteria: We evaluated our defense (BIC-D)
based on: 1) improvement in test accuracy post-sanitization;
2) true positive rate (TPR) — the fraction of poisoned sam-
ples that are detected; and 3) false positive rate (FPR) – the
fraction of non-poisoned samples falsely detected.

Hyperparameter setting: On TREC05, we also applied
the KNN-based defense (KNN-D) [25], GS-based defense
(GS-D) [14], and BIC-based defense with clean data (BIC-
C-D) [19]. The SVD-based defense (SVD-D) was infeasible
due to high computational cost. For multi-class classification,
BIC-C-D was not applied, since it was proposed for binary
classification. For ResNet models, we applied SVD-D on the
output layer. We used hyper-parameter values suggested in
the original papers for these methods. To show the best per-
formance for SVD-D, we set the number of suspicious sam-
ples to be removed to the actual poisoning rate for poisoned
sets, and to 0.01 for non-poisoned sets. We also applied DPA
[17] on CIFAR-10. To improve performance against LPDP,
DPA first trains the base classifiers (ResNets) on the whole
training set by semi-supervised learning, where the DNN is
trained to predict the rotation angles of the images instead of
their categories [10]. Then each base classifier is fine-tuned
on its dedicated partition through supervised learning. To re-
duce computational cost, we set the number of partitions to 5.

5.2. Experimental Results

AS Poisoned KNN-D GS-D BIC-C-D BIC-D
0,0 0.9522 0.9001 0.9645 0.9579 0.9684
0, 1000 0.8867 0.8974 0.9372 0.9434 0.9611
0, 2000 0.8461 0.8828 0.9225 0.9124 0.9530
0, 3000 0.8215 0.8660 0.9023 0.8519 0.9425
0, 4000 0.7932 0.8358 0.8131 0.6882 0.9411
0, 5000 0.7731 0.7958 0.7042 0.6039 0.9394
0, 6000 0.7495 0.7751 0.6314 0.5697 0.9329
1000, 1000 0.8339 0.9049 0.9129 0.9217 0.9454
1000, 2000 0.7924 0.8917 0.8807 0.9088 0.9284
2000, 1000 0.7833 0.8880 0.8738 0.9061 0.9429
2000, 2000 0.7488 0.8793 0.8568 0.8288 0.9143
2000, 4000 0.7142 0.8421 0.8159 0.6385 0.8998
4000, 2000 0.7114 0.8367 0.7711 0.7153 0.8731

Table 1: Test accuracy of SVM classifiers as a function of
attack strength on TREC05.

Results on binary classifiers: Tab. 1 and 2 show clean
baselines (Attack (0,0)) and poisoned classifiers’ accuracies.
As total AS is strengthened to 6000, the classification ac-
curacies of SVM and LSTM drop notably, demonstrating
the effectiveness of the attacks. Then, we applied the four
defenses on the corrupted datasets and trained classifiers on



AS Poisoned KNN-D GS-D BIC-C-D BIC-D
0,0 0.9632 0.9313 0.8339 0.9629 0.9701
0, 1000 0.9363 0.9281 0.8205 0.9607 0.9682
0, 2000 0.9111 0.9183 0.8123 0.9217 0.9619
0, 3000 0.8852 0.8941 0.7792 0.8712 0.9588
0, 4000 0.8668 0.8744 0.7347 0.6915 0.9513
0, 5000 0.8159 0.8449 0.7153 0.6149 0.9465
0, 6000 0.8028 0.8009 0.6824 0.5906 0.9424
1000, 1000 0.8788 0.9317 0.8383 0.9359 0.9584
1000, 2000 0.8681 0.9131 0.8176 0.9232 0.9476
2000, 1000 0.8691 0.9013 0.8198 0.9277 0.9551
2000, 2000 0.8521 0.9125 0.8208 0.8404 0.9431
2000, 4000 0.7738 0.8905 0.7718 0.6514 0.9223
4000, 2000 0.7985 0.8821 0.7949 0.7368 0.8991

Table 2: Test accuracy of LSTM classifiers as a function of
attack strength on TREC05.

AS KNN-D BIC-C-D BIC-D
0,0 -/0.0745 -/0.0505 -/0.0177
0, 1000 0.8393/0.0826 0.8846/0.0724 0.8898/0.0249
0, 2000 0.8154/0.0936 0.8340/0.0775 0.9044/0.0841
0, 3000 0.7856/0.1095 0.7303/0.0881 0.9036/0.0877
0, 4000 0.7342/0.1377 0.3644/0.3209 0.8689/0.0553
0, 5000 0.6478/0.1798 0.1951/0.3621 0.9014/0.0885
0, 6000 0.5761/0.2122 0.1122/0.3868 0.8865/0.0652
1000, 1000 0.8996/0.0888 0.8628/0.0598 0.8633/0.0499
1000, 2000 0.8518/0.1057 0.8420/0.0681 0.8678/0.0629
2000, 1000 0.9082/0.1012 0.8284/0.0630 0.8874/0.0586
2000, 2000 0.8842/0.1099 0.7446/0.2128 0.8351/0.0737
2000, 4000 0.8362/0.1339 0.2102/0.2958 0.8113/0.0809
4000, 2000 0.8261/0.1452 0.4390/0.2698 0.8142/0.1131

Table 3: TPR/FPR of three defenses on TREC05.

the sanitized datasets4. The performance of BIC-C-D drops
rapidly with AS over 4000. The test accuracies of KNN-
D/GS-D decline gradually as AS increases (GS-D performs
even worse than the poisoned classifiers under strong attacks
and for LSTMs5), while our BIC-D performs stably and out-
performs the others in all cases (marked in bold). Tab. 3
displays TPRs and FPRs for BIC-D, BIC-C-D, and KNN-D6.
Our defense exhibits lower FPRs and higher or comparable
TPRs than KNN-D and BIC-C-D across all attacks. When the
AS exceeds 4000, BIC-C-D fails to detect poisoned samples
and falsely removes clean samples.

Results on multi-class classifiers: Tab. 4 shows the clean
baseline (Attack 0) and poisoned classifier’s accuracies. As
the number of poisoned classes increases, the test accuracy
drops by over 10%, demonstrating the effectiveness of the at-
tacks. Similar to the results for binary classifiers, our defense
outperforms the other three defenses in classification accu-
racy (marked in bold) in all attacking cases, excluding attack
0 (attack-free). When there is no poisoning SVD-D performs
the best, as we set a small number of suspicious samples for
removal, which is difficult to set accurately in practice with-

4For BIC-C-D [19], we alternately apply BIC-C-D on ham and spam until
the total BIC cost over the two classes converges.

5We used the settings from [14], which were tuned for a logistic regres-
sion classifier.

6GS-D does not identify the poisoned samples.

Defense 0 1 2 3 4 5
No defense 0.8634 0.8502 0.8302 0.7974 0.7634 0.7430
BIC-D 0.8638 0.8616 0.8528 0.8452 0.8446 0.8416
KNN-D 0.7150 0.7154 0.6688 0.6758 0.6602 0.6752
GS-D 0.8272 0.8074 0.7866 0.7288 0.7036 0.6852
SVD-D 0.8668 0.8584 0.8466 0.8164 0.8046 0.7812
DPA 0.8044 0.8028 0.7971 0.7958 0.7852 0.7782

Table 4: Test accuracy of ResNet-18 as a function of attack
strength on CIFAR-10.

Attack 0 1 2 3 4 5
True Positive Rates (TPRs)

BIC-D - 0.9275 0.9263 0.9133 0.9378 0.9290
KNN-D - 0.9025 0.8050 0.8112 0.7922 0.8010
SVD-D - 0.3650 0.2662 0.3587 0.4171 0.3655

False Positive Rates (FPRs)
BIC-D 0.0267 0.0494 0.0717 0.0881 0.1405 0.1626
KNN-D 0.4596 0.4628 0.4514 0.4533 0.4545 0.4484
SVD-D 0.0100 0.0254 0.0587 0.0769 0.0932 0.1269

Table 5: TPR and FPR of three defenses on CIFAR-10.

out a clean validation set. When DP is present, KNN-D/GS-D
perform even worse than the poisoned classifier. SVD-D only
improves the test accuracies by 4% at most. Due to fine-
tuning base classifiers on small partitions which are individ-
ually inadequate for learning a precise DNN, DPA performs
worse than the single poisoned classifier under weak attacks.
However, it offers a slight improvement in the test accuracy
(3% compared with the single poisoned model) under attack 4
and 5, as ensemble models tend to be more robust and better at
handling noise than single models. By contrast, the test ac-
curacy for our method drops by only 2% under the strongest
attack, compared with the clean baseline. Tab. 5 shows the
TPRs and FPRs of the defenses. Compared with the other
two defenses, our defense has relatively high TPRs and low
FPRs for all cases. KNN-D falsely detects lots of clean sam-
ples in all attack cases, even when there is no poisoning, and
SVD-D only detects a small amount of poisoned samples.

For both binary and multi-class classification, our method
falsely removes a few clean samples from the attack-free
datasets. These samples are well-explained by more than one
class7, and it is BIC-efficacious to re-distribute these samples.
Removing these samples also slightly increases test accuracy.

6. CONCLUSION

We proposed an unsupervised BIC-based mixture model de-
fense against DP attacks on classifiers, where the poisoned
samples (which may originate from more than one class), if
present, are an unknown subset of the data set. Our defense
utilizes mixture modeling to isolate suspicious samples and
solves outlier detection by minimizing BIC. We launched our

7For example, the clean samples falsely removed from TREC05 have sim-
ilar average log likelihoods under ham (-879.77) and spam (-852.88). An
SVM on a “perfectly sanitized” dataset (i.e., the clean dataset without these
samples) classifies these samples with only 0.5855 accuracy.



defense and three other defenses against DP attacks targeting
SVM and NN-based classifiers for TREC05 and CIFAR10.
Experiments demonstrate the effectiveness and robustness of
our defense under strong attacks, as well as superiority over
the other defenses.
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